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~ coupled, research topics were posed, centering on the usage of Signed-Digit

(SD? arithmetic to solve mult/acc intensive signal processing tasks (streaming

data). Efficient implementations for signed-digit arithmetic were sought for

systolic arrays. Connectivity and control were investigated for innherent

. fault-tolerance. Lastly, multiple-valued logic for the Signed Binary Number

£ Representations (SBNR) was studied for both fault-tolerance and array

4, regularity. The dominant and focused application of this research was
efficient solutions of specific signal processing algorithms.
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SBNR DIGITAL SIGNAL PROCESSOR ARCHITECTURE
1.0 Scope of Work

"There is a great deal of innovation for new complex special-purpose
signal processing integrated circuits...often yielding well over a factor of a
thousand improvement over even the fastest general-purpose machines,”
Jonathan Allen, Fellow IEEE, in "Computer Architecture for Digital Signal
Processing,” Proc. IEEE, Volume 73, Number 5, pp. 852-973, May 1985.

The following research was proposed in a three-year period. This
constitutes significantly distinct efforts which complement the existing
efforts in current adaptive signal processor architecture research. Briefly,
these tasks comprised a study of non-conventional number system
implementations focusing on VLSI enhancements attributable to redundant number
systems. This increased practical knowledge should add impetus to many
potential signal processing tasks (target trackers, beamformers,
communication, receivers, spread spectrum). Three diverse, yet tightly
coupled, research topics were posed, centering on the usage of Signed-Digit
(SD) arithmetic to solve mult/acc intensive signal processing tasks (streaming
data). Efficient implementations for signed-digit arithmetic were sought for
systolic arrays. Connectivity and control were investigated for inherent
fault-tolerance. Lastly, multiple-valued 1logic for the_Signed Binary Number
Representations (SBNR) was studied for both fault-tolerance and—array
“fegularity. The dominant and focused application of +this research was
efficient solutions of specific signal processing algorithms.

Tl e .

2.0 Conventional Number Systems Drawbacks

e om

"t

The most serious objection to using the conventional number
representations (the sign magnitude, the radix complement and the diminished
radix complement representations) for a signal processor cell is that addition
in these representations cannot be truly parallel. A computing cell designed
for such representations cannot be easily connected to run in parallel with
identical cells in such a way that the microsteps involving additions can be
carried out in time independent of tne number of cells. For signed-digit
representations, the number of cells and the precision of the operands will
not affect tne time of such microsteps. The time needed will only depend on
the structure of an adder position.

o

Another convenience in designing arithmetic modules with signed digits
is that no special treatment is required for the most-significant position.
For radix complement or diminisned radix complement notation, special
attention is needed to handle the arithmetic shifts, the sign of multipliers
and/or the end-around carries. For the sign magnitude notation, tne sign of
the result of an addition or subtraction requires dedicated circuitry. All of
these little problems do not exist for the signed-digit notation. The shift
input for any arithmetic shifts is always zero. The indicator digit (the sign
digit) can be treated just like all other digits.

-
- ."A .

-

=

The serial mode of processing has to proceed from the least-significant
end to the most-significant end if the conventional number representations are
used. The overflow condition or tne leading zeros can be detected only after
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the last segment of the result has been generated. For the signed-digit
notations, serial operations can proceed from the most-significant end.
Processing may be stopped by an end symbol in the operands such as the space
zero discussed by Avizienis [1]. This can 1lead to a more efficient serial
processing procedure if the allowed precision is an excess of <the needed
precision. Since the most significant digits of the result can be generated
first, the overflow condition or the leading zeros can be detected at the
beginning of an operation. Result digits may be stored away in their final
positions without subsequent corrective shifts which is not necessarily
trivial in a multi-precision environment.

For the signed-digit notations, the basic arithmetic algorithms for each
digit position are essentially invariant with the position of the operand
digits. Each result digit is dependent only on the operand digits in a fixed
number of digit positions. Because of this the detection and the correction
of hardware errors can be independently implemented for each digit position as
suggested by Avizienis [1]. The "round-off" error resulting from simple
truncation is without bias. For a mantissa of m fractional digits, the
maximum absolute truncation error in the mantissa is less than one mantissa
bit!

Besides the conventional number representations, there are a few other
novel number representations which have advantages in special situations but
are not suitable for this variable precision module. Examples are the residue
number representation and the negative base representation. The residue
number system developed from 1linear congruences does not require carry
propagation. The multiplication of two numbers needs as little time as the
addition. The main difficulties of the residue number representation pertain
to the determination of the relative magnitudes of the two numbers and to the
division process. The negative base number system, on the other hand, is not
easily implemented in negative bases. The sign of a number in a negative base
depends on whether the most significant digit is an even or odd position.
This complicates the division process since the signs of the operands and the
signs of the intermediate results are essential in any division algorithm.

In short, the signed-digit systems provide two dimensions of freedom:
the number of processor modules and the precision of operands. These allow a
variable length operation to be practicable in a processor with a variable
number of digit positionsa. The signed-digit systems are natural choices for
the present module which 1is required to process operands with a variable
precision either by itself or in parallel with a variable number of identical
modules.

2.1 Task Summaries

1. We studied the impact of signed-digit number systems for signal
processor implementations. Specifically, we proposed to implement new ALU
structures within the context of recursive algorithms (LMS, LS, SVD, Givens
Rotations, ...) focusing on fault-tolerant architectures.

2. We analyzed at least four architectures: fully-parallel multiple
adder/mult. structures, distributed arithmetic structures, multiple operand
adder structures, and ROM/adder structures making maximal use of pipelining
and parallel mechanisms.
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3. We studied engineering trade-offs among conventional, 2's complement
arithmetic and signed-digit arithmetic to reduce pin count and develop more
functionally robust devices for signal processors. Multi-valued 1logic
circuits were considered.

2.2 Synopsis of Proposed Method

Classical techniques were applied to these tasks. Namely, VLSI
floorplans were produced and area/time figure of merits generated. Analytical
comparisons were then established using popular benchmarks as the LMS
algorithm and least-squares algorithms applied to signal processing of radar,
sonar, and communications tasks.,

2.3 Objectives Summary

We sought to demonstrate the effectiveness of each implementation
towards design goals such as speed, power, weight, and size. Additionally, we
intended to demonstrate the efficiencies of signed-digit implementations which
supposedly have minimal interconnects between adjacent digit positions. We
demonstrated the superior modular features of signed-digit for ALU's 1in
adaptive signal processors.

3.0 Identification and Significance of Opportunity

This focused architecture study exploited promising memory-oriented
structures common to distributed arithmetic organizations because the costly
multiply/accumulate cycle (typical in signal processing) reduces <to fast
shift/add cycles. Secondly, signed binary number representations (SBNR), a
subset of redundant number codes, were realized with higher information per
wire ratios, thus reducing intercell connections (a relatively high VLSI cost
in current conventional number systems). Thirdly, multi-valued-logic
(although slow) maps SBNR representation one-to-one. Hence, its effectiveness
was studied.

As a result, digital signal processing applications such as FFT's,
convolutions, Hartley transforms, beanforming, coding, communications
receivers, target <trackers, and antenna arrays stand to achieve lower power
requirements and higher microminiaturization levels. There is a great need
for ultra-fast FFT's in spread spectrum. Because no architecture research
operates in a vacuum, we collaborated with NCR, TRW, and RCA foundries to
eventually test/develop actual devices. NCR 1is particularly interested in
this study because its local R & D facility designs systolic array devices
(notably the NCR 45CG72, the GAPP 6x12 PE chip, for which Space Tech has been
writing signal processing algorithms). This is the one of the few available
true systolic array chips, and an excellent testbed for our studies.

[A difficulty in terminology now arises. In this research, we studied
redundant number systems (sometimes called redundart coding, SDNR, SBNR, and
mistakenly called negabinary and/or mirror numbers). We also investigated
fault-tolerant properties of this number system partially with redundant
circuits (here, “redundancy” refers to more than one circuit)., We hope the
reader can determine the meaning from its context.]
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3.1 Multi-Valued-Logic and Systolic Arrays

In recent papers by Hurst [2] and this Principal Investigator (see
Appendix), it is noted that multi-valued logic (MVL) may show great promise in
the future for VISI. At present, binary systems are facing interconnect
problems which appear to be insurmountable. Silicon areas devoted to
intrachip connections now consume twice the area of active logic elements on
the chip [3]. Array implementations whether data-flow, systolic, or otherwise
cause a severe escalation of interconnect area thus rendering lower siliccn
area efficiencies. Likewise, off chip connections are generating new and
complex problems for the board designer. These packaging solutions are not
without concomitant thermal and mechanical constraints. Such factors cause us
to reflect upon denser information content to interconnection ratios. A
solution using higher radix arithmetic is proposed and coupled with MVL
promises to relieve some of the silicon area inefficiencies when conventional
binary arithmetic is used. Even for tne regular architectures of systolic
arrays, Moraga [4] has shown the effectiveness of such MVL implementations.

3.2 Computational Model

R SR X M %N Wl 2 S

Our VISI model of computation to derive complexity measures was based on
the following generally accepted assumptions [5—7 :

2

y*r:gr;'

a. Wires have minimal widtn W=A(const); hence W
the area.

b. The area required to store one bit of information is A(W)2); the distance
between parallel wires is A(W).

c. Double layer metalization is allowed.

d. Wires run only horizontally and vertically.

e. Each transistor needs a minimal transition time, Y=A(k) (k is a constant),
to change its state. Thus Y is the unit execution time.

f. A binary signal propagates along a wire in time A(W). Any long wires of
length, L, require respective buffer/drivers with area A=A(W) x O(L).

is the unit of measure for

R W

3.3 Signed-Digit Number Representation

In the most general sense, a redundant number system allows both an
increase in the number of positive digits and negative digits as follows.

(n,m)
LRSS RxRx ... xR --> Q (1)

28 25

-
7

o1 85 eee 8_p =) T a4, (2)

S where tne digits d. € R : = {-rﬁ,-r1~1,...,O,1,...,r2-1,rz} (3)
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The representation described by Eqs. (1-3) is called redundant notation with
base 4. The above mapping of the number representation (or notation), w >
assigns to a sequence 8y 8_p of digits a value from a range Q where Q
may be an integer, the rea?s, or zero.

The general redundant representation does not lead to efficiencies in
algorithm computations or implementations. If subsequent restrictions (Sec
3.4) are placed upon the general redundant notation, very attractive
properties support efficient implementations. However, the basic properties
of Signed-Digit Number Representations (SDNR) are:

a. The radix, 4, is a positive integer.
b. The SDNR of the algebraic quantity, zero, is unique if
m=n, (d-1) > m and m-1 > d-1)/2 (4)
c. Transformations between conventional representations and SDNR exist.
d. Totally parallel addition/subtraction are possible.
e. Addition and subtraction of two numbers are free of serial propagations of
carry/borrows.
f. SDNR numbers are positionally weighted.
8+ The polarity of an SDNR number is given by the polarity of its most
significant non-zero digit.
h. No special treatment is needed for the most-significant position.
i. Addition/subtraction time is independent of operand length.

Avizienis [1], Atkins [8], Tung [9], Ercegovac [10], and Robertson [11]
have shown that SDNR can effectively operate in a general purpose digital
computer for the following reasons.

1. Redundancy introduced into the adder-subtracter structure reduces (but
does not entirely eliminate) carry-borrow propagation leading to rapid
multiplication.

2. Full precision comparison of the divisor and partial remainder in division
algorithms is not required because quotient digits can be determined from
relatively few high order bits.

3. Negation is a simple logical complementing of the sign bits (e.g., unlike
two's complement notation which requires an additional step, adding an LSB
"one"). As was seen in the ILLIAC III [8)], such negation expedites execution
of floating-point addition and subtraction. .

4. Variable 1lengtn operand formats and parallel vector arithmetic are
facilitated by basic properties of SDNR's. First and foremost, operations can
proceed from left-to-right (rather than right-to-left as required in 1's, 2's
complement representations). Secondly, if appropriately implemented, the
position of the least-significant digit need not be known for adders and
subtracters.

S. Because a signed-digit combination adder/subtracter needs no carry/borrow
in the LSD, the ALU can be partitioned into identical and cascadable single
digit adder/subtracters. VLSI implementations tend to become highly regular.
6. Multiplication with SDNR tends to automatically produce rounded results
(of great importance in computationally intensive signal processing
applications). In fact, Robertson, based on worx by Rohatsch [12], has shown
that the probability of obtaining a rounded result is 5/6.

7. SDNR allows unusual algorithms such as wired-in significant-digit
aritnmetic [13] and dual notation algorithms capable of accepting both SDNR
and conventional operands (1's, 2's complement) to produce SDHR results [14].
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A These observations lead to tne implementation of a universal Arithmetic
ot Building Element (ABE) capturing not only the preceding algorithms but also
‘l efficiently separating functions of logic designs and arithmetic design [15].
%‘ ‘ 8. Overflow detection can occur immediately following the production of most-
51 g significant result digits (unlike conventional notation).
ey .
Cu,
xg‘ 5 3.4 Efficient SDNR Realization
W
B Several implementations based on the SDNR have already been investigated
‘53 g! [11,16,17,18]. All of these, however, sought to satisfy general data
,?, ' processing requirements of a mainframe computer. In contrast, signal
m§k< . processing applications are generally multiplication/addition intensive. (Of
:Q&P N late, the wutility of distributed arithmetic [19,20,21] has shed new light on
by S bit-wise algorithms, also essentially partial product and accumulation
intensive.)
i 3?‘
(N An allowed digit set (-1,0,1) which is a subset of the SDNR is assumed.
B2 A redundant Signed Binary Number Representation (SBNR):
D) \".v
e i X Xpoq+++Xy ==> X; in (~1,0,1) (5)
§4} ) represents a number whose value is expressed as
W ~'5{
AN n
Pl i1
e sun %, . 2 ©)
A ﬁ i=1
B The importance of SBNR is as follows:
>
.&'. e
”_} e a. Conversion of wunsigned binary numbers to SBNR is unnecessary as they are
X ﬁ -~ identical.,
X b. Since a two's complement binary representation (ann_1...x1)2 expresses
' ‘; the number
g
’ﬁ# n-1 n-1 o1
A _ - i-
;l » '.I': an + sEm Xl-2 (7)
': ¥ '.'-‘ i=1
3 s
. T, .
o this same number can be expressed in SBNR by
7oA el E
-‘ . 'JI
e I SPP S (®)
A .
O because the sign bit X in 2's complement representation is considered to have
.J¢; ™ weight =2n=t, Hence, conversion from signed Dbinary 2's complement
= . representation to SBNR is simply an inversion of the sign bit alone!
0w R
.;u) }: Avizienis [1] further demonstrated that the SBNR (radix d=2 with digit
445: oA values -1,0,1) with a decreased redundancy requirement (invoking a two-step
: ’ﬁ addition by =allowing the propagation of <the transfer digit over two digital
fe o positions to +the left) requires only d+1 sum digits. In general, he showed
' that the lower limit of required redundancy of one digit depends on the number
s el of digital positions tne transfer digits propagate as follows.
.
-'I
)
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If GIVEN:
' a. no redundancy utilized
3 b. $;, sum digit {d values only}
,,: ﬁ THEN:
K 8, = f(z WVirZ54q0 02V ) (9)
o z; = ith adéen& &1glt

y; = ith augend digit

If, however, s, in {d+1 values}, then Eq. (9) becomes

si = f(zi,yi,zi+1 'yi*1,zi+2’yi+2) (10)

S

and if s, in {d+2 values or more}, then Eq. (9) becomes

s, = i(zl,y ,le,ylH) (11)

- i~
A NS

OBy &3

Using these observations, a single cell can implement the one digit
adder/subtracter if certain choices for a redundant digit are always made.
Specifically, let any redundant binary digit be represented by two bits X and
Xd as follows where 1 = -1,

w su >

m
- .

. i
LT, e S

Table 1. Redundant Digit Selection Rule

Redundant Representation
aj Digit Sign Digit
§ X Xs xd
N .
S 0 0 0
A g
fy
h 1 0 1

Invoking this TRIT realization for our SBNR further gsimplifies the cell
implementation without sacrificing the <transfer digit propagation advantage.
Using this subset allows six types of intermediate results in the first of two
addition steps as defined in Table 2,

!! T 1 1
3
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Table 2. Intermediate Addition Step Classes

' Next Lower Intermed.
e Type Augend Addend Position Carry Sum
:52; (x,) (y)  (xy_qv5_)  (ey) (s,)
e ﬁ 1 1 1 — 1 0
Bl :
;E‘.
Both are _
- g 1 0 positive 1 1
g; 2 At least one
5y 0 1 is negative 0 1
ol
B @ 3 0 0 -— 0 0
n @ 1 1T - 0 0
ok 4 _
1}; 1 1 -—- 0 0]
' @ _ Both are _
- 0] 1 positive 0 1
e {.‘j 5 _ At least one _
}: % 1 0 is negative 1 1
e - - _
i ii 6 1 1 -— 1 0
. The second step in an addition cycle adds s. and c. from the next lower
,}: , position to obtain a sum digit z; with no carry}borrow Zeneration required.
l.s'
h; §§ If we allow any redundant binary digit to be represented as X X. with
‘i the redundant digit selection rule as prescribed in Table 1, the ~Bdolean
equations which govern selection and addition per Table 2 produce two critical
s !i observations. The ith SBNR carries, C_ and C,, depend only upon the ith, i-1
Q: digits and i-1 carries. Hence, carry propagation extends only into the next
:Q. adjacent digit column. SBNR addition does not require full-word carry
ﬁ{ ga propagation as in binary addition. SBNR addition makes systolic array
p& implementations straightforward. Pre-acrambling bits or words is not
' required.
A -
ah gf A primitive cell suitable for large VLSI arrays and especially for
f@ adaptive signal processors must have few interconnections beyond its nearest
SIS neighbors and must have very simple controls. VLSI arrays effectively
Y ﬁé function in a data-flow manner. Fortunately, many signal processing
- > algorithms can be implemented with distributed or bit-serial arithmetic.
Y Mactaggart and Jack [22], and others have shown that bit-serial
Ay 3; implementations offer a highly regular desi and lower power consumption than
ﬁh P conventional arithmetic. One such cell 16] is depicted in Figure 1. This '

Y cell implements the basic addition/subtraction steps of Table 2 using the SBNR
" of (-1,0,1) and the redundant digit selection rule of Table 1.

&
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Figure 1. Primitive Bit-Serial Cell [16]

3.5 Matrix X Matrix Multiplication

Most of the computational effort expended by a digital signal processor
is devoted to matrix x matrix multiplication. Such matrix operations may be
either sums of word level products or sums of bit level products. We now know
that a strong relationship exista between word and bit level systolic arrays

23]. If we treat such computational problems from the outset as bit level
manipulations, fast area efficient VLSI arrays are possible [24,25]. In our
implementations, a systolic-like bit 1level approach 1is assumed where each
processing cell is a multiplier and gated full adder. However, the multiplier
and adder wutilize SBNR rather than 2's complement arithmetic for reasons
discussed earlier. '

-, S

L

Another advantage to SBNR is the absence of special circuitry and
algorithms to handle signal operands. In 2's complement arithmetic, the Baugh
Wooley algoritnm can be used (with an attendant high latency cost). In this
procedure, 2's complement words are treated as positive numbers if:

1. A fixed correction term 1is added to the result for each word level
multiplication.
2. All partial products normally with a negative weighting are complemented.

Two's complement implementations on a systolic array require a negative
weighting flag or a tag on the partial products which must propagate
vertically down through the array. Hence, another latch and control line is
required for each columnar path. Furtnermore, final addition of correction

B
4
A
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:
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terms requires an initialization of the accumulators in tne adder trees to a
value, which is generally
(2% - 2281y ¢ o (12)
In general, the number of systolic array cells required to multiply two

nxm matrices witn elements m bits long in & fully parallel fasnaion is a total
of

nx {2m + logzn) , (13)

cells where word growth is taken into account. However, McCanny and McWhirter
[26] have identified a procedure to halve the number of cells by removing
intermediate zero bits. The procedure is to permit only one set of words
within a given row to move at any time slot, keeping the other set of words
within the row at fixed sites. Then, in the next time slot, move the fixed
set of words and keep the previously moved set fixed. This alternation of
left/right moves can be maintained by latching bits using half the system

clock speeds. Successive rows in the array must move in anti-phase relative
to each other.

3.6 Device Redundancy and Fault-Tolerance

P

Any practical architectures designed today should be highly fault-
tolerant. Circuit redundancy and built-in-self-test are theoretically
achievable. Redundancy (of elements, not aritnmetic codes) does offer one
additional advantage to the chip builder. The system designer can run models
long before production of the new system starts. But, reliably high-yield
logic chips for these machines are often difficult to achieve because the
system designer always wants the very latest in technology. Redundancy in the
basic logic design can enhance the yield by a significant amount and greatly
reduce the wafer start requirements. When the yield increases and production
starts, this same redundancy is now available to improve reliability.

The model in Section 5.7 demonstrates the dependence of yield on the
nature of the defects and, together with gross yield estimates and the
appropriate nonredundant yield factor, it will serve as a reasonable starting
point to model actual yield data. The existence of complex local correlations
and some non-point-like defects will clearly complicate matters, slthough, in
many cases, Aa perturbative approach will be adequate to model the situation.
Understanding yield issues is important to architecture design.

X

1 4
"~

P |

3.7 Redundancy, Fault-Tolerance and Testing

!

Achieving high reliability in & complex device or system is a difficult

but critical task. The investigations for this project have included a
careful consideration of reliability and testability considerations. It is
now challenging for manufacturers to maintain a compound growth rate in per-
circuit reliability of 60%. Pagst methods are no longer valid. Tne
verification of machine reliability due to electronic components poses a
significant challenge to tne future, For example, consider two realistic
examples. Assume a computer with 1,000 circuits/chip. Suppose that a
manufacturer builis 1,000 macnines to acnhieve 5CK user power-on hours per

§§ machine a%t the usua. !,C0C nour MTTF for tne electronics. This corresponds to
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a 50 PPM cumulative fraction fail for the chips. To verify this failure rate
at a 90 percent confidence level, a manufacturer would have to teat 80,000
chips to allow for one failure during testing. For an overall production,
this represents eight percent of a production run. Historical trends indicate
that the overall reliability rate improvement is approximately 2X each year.
By 1994, if we consider the constraints of the first example, the reliability
must be theoretically improved by 1,000 times. Verifying reliability to thne
! same confidence level would require 80M chips, or 80 times the number of the
actual production run. Clearly, reliability, testing, and redundancy are
intimately coupled.

g il mm R

..

The following aspects of reliability were considered:

1+« A major problem with all complex, newly designed devices which use a
sufficiently large chip area is poor yield. The yield can be significantly
improved by using redundancy. During the final manufacturing stages, devices
with only & few "bad"” cells can be reconfigured to leave out bad cells.

AT I

2. A similar approach for fault-tolerance can be used for hard failures
in the field. In this case, reconfiguration has to be dynamic. This means
that after a cell had been detected to be faulty, the array configuration has
“ to be altered under program control.

A
2

T
»

-

3. To study the effectiveness of fault-tolerance and for optimizing
such designs, estimation of hard and soft failure rates is required. Because

o the handling strategies can be different, hard and soft failures often have to
ﬁi be considered separately. Preliminary estimates are based on empirical

Wy techniques. Such estimates are not very accurate, but are still indispensable

:' “ when evaluating different design options.

. 2y

fh Ry Consideration of soft failures is especially important for Multi-Valued

‘ﬁk Logic (MVL) devices. Because the voltage range is divided into more than two
!z regions, it will take much less energy (from electromagnetic noise or alpha-

v particles, etc.) to cause an extraneous transition.

4. Testing, both by the manufacturer and in the field, is an integral
part of reliability strategy. It is now recognized that testing must be
considered during <the design pnase itself. Two aspects of testing will be
considered. Design-For-Testability (DFT) is to be used for easier and faster

iy
e e
o)

R !; test-pattern generation and applications. The other is Built-In-Self-Test
i A (BIST), which allows a system to exercise itself and verify correctly
:r operating hardware.

' | .

W ﬁ' 4.0 Technical Objectives

Succinctly, the technical objectives of this effort were:

. '
A
‘e

&
MV
<

a. Determine intrinsic properties of SBNR embedded as PE's in a systolic
array via distributed arithmetic cells. Capitalize on the inherent modular
properties of residue numbers to be implemented in SBNR engines.

j &

AN b. Establish highly modularized architectures using SBNR arithmetic engines
to increase information per wire ratios.
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c. Determine engineering trade-offs of power, weight, and size for SBNR array
architectures to help a system designer and silicon floorplanner lay out
competitive VLSI devices.

4.1 Higher Radix Implementations

We considered at least one implementation of higher radix aritametic,
namely ternary, which when viewed as a redundant or signed-digit number system
held promise for signal processing applications in which division-sparse
operations occur. We studied signed-digit number representations and basic
properties attractive to signal processing applications which manipulate
sequential data streams.

4.2 Systolic Array PE

We identified a realization of TRITS (ternary digits) which serves as
the primitive VISI cell. The regular nature of this cell enhances systolic
array architectures. Multiple-valued encoding affords us the opportunity to
reduce ripple-through carries. Ternary arithmetic may have a balanced as well
a3 an unbalanced coding. Balanced encoding requires less gates when compared
to binary and unbalanced encodings. Unfortunately, logic delay increases
[27]. However, in the TRIT realizations utilized herein, a balanced encoding

coupled with redundancy in the encoding improves both logic delay and gate
count.

This Principal Investigator has considerable design experience with
systolic array PE's. He has designed control units for the first systolic
array (NCR 45CG72) and generated several signal processing algorithms for it
in conjunction with NCR (including LMS, LS and SVD for adaptive beamformer
applications). From the experiences, a basis for new and faster circuits can
be identified. One such candidate, SBNR PE suitable for a systolic array, is
shown in Figure 2. This is a derivative of tne NCR cell with several critical
differences. First, additional latches and data paths exist. Second, RAM is
much larger at each cell. Third, internal cell pipelining is used to speed
effective instruction execution (not easily shown in a block diagram).
Fourth, the cell implements signed-digit arithmetic with fewer intracell
connections. Lastly, this single cell can do multiply, add, and subtract in
fewer steps. A systolic array module (SAM) of this PE is depicted in the
floorplan of Figure 3.

Lt W
e — |
[ 1) R ; ; | S— V1]
S .
L. .
|

FPigure 2. An SBNR Data Flow Cell
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4.3 Signal Processing Algorithm

There is an intimate coupling between word and bit level matrix x matrix
multiplication. A systolic implementation of comm.n algorithms invoking a
digit subset of redundant number representations, Signed Binary Number
Representations (SBNR) is easily realized with TRIT MVL. A significant
property of redundant number systems supports the production of left-to-right
(most-sigrificant-digit to least-significant-digit) algorithms. Sips [28] has
demonstrated the utility of left-to-right algorithms for a general purpose
computer. We found this RTL property extremely beneficial for the ADC and DAC
interface.

We analyzed appropriate ADC and DAC SBNR realizations. It is important
to note that the realizations directly carry over from a property of redundant
numbers. This is vital for real-time signal processing (which 1is
predominantly analog sourced). -

4.4 Fault-Tolerant Properties

It is important to identify PE's that are highly regular, have minimal
I1/0 pinout requirements, have minimal gate count, inter- and intra-circuit
connectivities and low power requirements that support a high degree of fault-
tolerance. VISI technologists are fast developing wafer scale-integration. A
major problem with such assemblies is that some cells are likely to be
defective. Hence, a major objective was to determine optimal reconfigurable
networks "around” such faults for our SBNR PE systolic arrays. The procedure
¥as to minimize the length of the longest wire in the system, thus minimizing
the communication time between cells. Channel width was also a major
consideration. The procedure assumed a probabilistic model of cell failure
since Leighton and Leiserson [29] have demonstrated many positive results. In
many ways this problem is similar to the graph-theoretic models used in the
bottleneck traveling salesman problem. Leiserson has already derived bounds
on wire length and channel width for two-dimensional arrays. We compared our
results with these bounds. Leiserson nicely provides us witn results [293
that show there is a simple, linear-time algorithm to connect most of the live
cells on an N-cell wafer into a linear array using wires of unit length 1,2,
or 3 channels of unit width 2.

5.0 Research Metnodology
5.1 Optimized Fault-Tolerant Designs

A four-step procedure is used from the top-level down. At the first and
highest step, use of an SBNR allows parallel and modularized operation of MVL

aritnhmetic processors for fast execution of full precision, fixed-point
arithmetic.

Second, a memory-intensive arithmetic algcrithm 18 employel wni:n
capitalizes on tne snort internal word lengins of SBNR processors. RCM-dasel
structures have been shown by Peled and Liu ~303 to be extremely effective for
FIR filters. Tnis PI has made the same discovery for adaptive filters us:i:ng
combinations of ROM's and RAM's. Third, memory accesses within processors can
be pipelined. Fourth, <ransistor-level simulation too.s can be employed to2
design the nigh-speei memory «cirzuits. The capability of 1dentifying fa:iled
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processor bits and maintaining correct DSP output in the presence of errors
arises from our use of an extensible algorithm for incorporating redundant
processor chips.

| =R B

'}i o 5.1.1 Reliability Models

I" By

:0 éi Reliability models to evaluate computer systems must estimate multiple

t system parameters (e.g., failure rate). The quality of the prediction model
QF rests on the estimates of its input parameters. In practice, extensive

» IR testing and burn-in procedures produce a best point estimate with measures of

:5‘ dispersion. In a crude way, we_employ only a point estimate; e.g., the mean

or an upper or lower bound [31]. Depending on the dispersion in its input
parameters, a reliability estimate may or may not be acceptable. For many
types of computer components, where reliability is high and failures are low,
the uncertainty involved in determining a parameter in question such as the

.
. - -
- -

&,

v gﬁ failure rate may Dbe large. A ultrareliability system necessitates
,@ o investigating the ensuing uncertainty in system reliability. Unfortunately,
(X this problem has not been well studied. Few available reliability evaluation

programs offer such sensitivity estimates.

- e
-

Our model was as follows (see [32]). Assume that system lifetimes are
exponentially distributed. To consider the dispersion in parameter
estimation, stipulate tnat the failure rate L is a random variable. It is
) doubly stochastic [33]. The system reliability at a givem time, t, also
] referred to here as time point reliadbility, is then a random variable R (%)
[with a particular value rL(t)], with the distribution in L. The variance of
R/ (t) is crude but an effective dispersion measure to the random nature of L.
We now can exploit the model with variations in failure rate for useful

properties of exponential distributions. Use two approaches, an exact model

' -
- e
m iJ;4

L]
‘i zi based on the complete distribution of L and an approximation of employs only
g Rl tne first and second parameter distribution moments.
%
!ﬁ Iyer [32] has shown feasible exact and approximate models. The exact
model is based on a gamma distribution and 1is easily extended to fault-
. tolerant redundancy configurations, such as TMR, by substituting the
}' o appropriate value for system reliability. Iyer develops first and second
"t h; moments for time point reliabilities.
5 5.2 Hypergrapn Models for Fault-Tolerant Systolic Arrays
“. ~
$~ _ We proposed and used a graph theoretic procedure similaer to [34] to
.ﬂ measure tne VLSI effectiveness of our design strategy by the area required to
:% ) lay out the fault-tglerant processor arrays. We repeat the completeness here
. in tne procedure in L34]. Three design strategies are described briefly.
o '. Embed the desired array in a simple graph to model tecnniques that build a
P 5: fault-tolerant array. Each PE must contain a robust switching mechanism to
e configure the good PE's into an array of the desired structure using nearest-
. neignbor coannections.
f 2. Embed the desired array in a grapn with nultipoint edges to build a robus:

"

array by running buses adjacent to the PE's and interconnecting the fault-free
PE's 1nto tne bank of buses [say, via laser-welding,. Use eacn array link via
a Jjistinct bus.
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3. Embed the desired array into a ‘"switched" graph, whose vertices are
partitioned into PE vertices ard switch vertices. Try to realize inter-PE
connections through a switching network external to the PE's thereby allowing
one to bypass faulty PE's. In comparison studies by [35,36], no single design
strategy as yet appears to be uniformly superior to any other.

Because of the multi-faceted nature, a firm understanding of all thrge
strategies is vital. Methods 1 and 3 have been deepl studied [36-43;.
Method 2 was proposed [37] and tangentially studied in [36 .

5.2.1 The Design Strategy

As in [34], we followed the same procedures. Assume a target array
structure. Construct a fault-tolerant array to simulate this structure. PE's
are represented by squares, and both wires and buses are represented by lines
as in Figure 4 [34]. Now construct some number of identical PE's that are
precisely the PE's that one would design for the ideal array, with the same
I1/0 interfaces. Next, lay the PE's out in a (logical, if not physical) row,
with lines coming out of their I/0 ports running perpendicular to the row of
PE's. Then run some number of buses above the row of PE's. We are told (via
some unspecified mechanism) which of the PE's are faulty and which are fault-
free. Now use laser welding to connect I/0 lines to buses in a way that
configures the fault-free PE's into an array of the desired structure.

Use the following area definition of [34]
area{array) = (PE-number) X (PE-width) X (Bus-depth)

Let Bus-depth be the maximum number of buses passing over any point in the
layout. (Ignore the contribution of the separate PE's.)

A solution array has two components: specification of the structure of
the array and of the configuration procedure. The procedure is an assignment
operation mapping ideal-array PE's onto actual PE's, as well as a mapping of
ideal-array edges/communication links to the buses that will simulate them.

5.3 Comparison of Error Detecting Codes

Several techniques to obtain fault tolerance through error detection
have been studied. Most of these schemes can be categorized as being hardware
redundant or time redundant. The hardware redundant systems (for example,
Triple Modular Redundancy [44] and quadded 1logic [45]) typically require
arithmetic to be computed in more than one processor. A checker compares tne
results to detect errors. These schemes require a factor of at least 2 or 3
in hardware redundancy.

The time redundant scheme requires that each result be calculated twice,
with the two answers compared to find errors. Two examples of this approach
are alternating logic [46] and recomputing with shifted operands [47]. In the
alternating logic technique, the result is recomputed from inverted operands
and should be the inverse of the original result. Recomputing with shifted
operands verifies that, when the operands are shifted, the result contains a
snifted version of the original bit pattern. Both of these systems are
effective primarily for stuck-at faults.
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A more general approach than hardware or time redundancy is that of
algorithm-based fault-tolerance (information redundancy) [48]. The central
idea in this technique is that the data are encoded at the system level in the
fcrm of some error-correcting or error-detecting code, and the algorithms are
designed to operate on encoded input data and produce encoded output data.
The result is real-time error detection without a duplication of arithmetic
processors or a doubled processing cycle time. The primary entrants in tnis
category are the low-cost residue and inverse residue codes [49.50,51], the
checksum code [48,52,53], and tne weighted checksum code [54].

5.3.1 Residue Codes

Residue encoding is based on finding the remainder of a sum of operand
digits evaluated modulo N, where N is a predetermined Dbase. The Dbinary
operand is broken into sections of a bits; each section is considered a
digit. The base of the operand is found from the digit size: N = 2%-1. For
a k-b%1t number, all k/a digits are added together, and the sum is evaluated
mod N. The remainder of this calculation is the residue code for tne
operand. The simple residue code will detect a fault in one bit, even after a
repetitive calculation 1like multiplication. It will also detect an error if
up to a consecutive bits are faulty [49].

Avizienis devised a scheme in which two or more residue digits are used
to detect and then 1locate an error [49]. Furthermore, the digits also check
each other--if only one residue digit indicates an error, then that residue is
incorrect--only if both show an error will a fault in the number be corrected.

5311 Signed-Digit Residue Code

The residue code has been extended ¢to include numbers expressed in
signed-digit number representation [50]. When a single digit of an SDNR
number is faulty, any number of (not necessarily consecutive) bits within that
digit may bYe in error, and the fault will still be detected. The only
exceptions to this rule are errors which add or subtract the base N from tne
digit. For example, if a=4, and the signed digit is changed from (9) to (-
6), the error will go undetected. However, only a very specific change in the
bit pattern will camouflage the fault, so detection is highly probable.
Furthermore, if the number is encoded in signed binary number representation,
more bits must be changed, and they must be changed to specific values of (1,
0,-1) to hide the error. The combination of SBNR and residue
encoding thus appears to have great fault-tolerance potential.

5.3.2 Checksum Codes

Unlike the research into residue codes, Abraham's studies of checksums
have been directed specifically at matrix encoding [48]. The checksums
approach attaches one or more checksums to the end of a row or column of a
matrix. These numbers then participate in all calculations as if they were
just data. The net effect on a systolic processor is simply an increase in
the size of each dimension of one or two rows. No special algorithms are
needed to take care of the error codea. Unfortunately, cnhnecksum coding was
introduced in the context of floating point computers. Fixed-point
calculations [like tnose prevalent in nigh-speed dedicated signal processors,




require a slightly more difficult coding scheme, because a full-precision

cnecksum would overflow a fixed-point system. In situations where the
. implementation depends on the number system, this report assumes fixed-point
operations.
is 5.3.2.1 Unweighted Checksums
¥
Y Y

In the simplest checksum code, an unweighted checksum is formed by

adding together all elements in a row or column of a matrix. Overflow bits

!! from this addition are ignored. Depending on the applications, just row or

column encoding may be sufficient, or both may be needed. The unweighted

checksum will detect a single error in the row or column. It is effective in

1 LU decomposition, matrix inversion, matrix-vector multiplication, matrix-
ég scalar multiplication and singular value decomposition [48] {53].

5+:3.2.2 Weighted Checksums

gg To achieve error correcting capability, the checksum must positionally
weight the addends. The result is the weighted checksum [54]. In this system
as each element of a vector within the matrix is multiplied by a different
weighting factor before being added to form the checksum. The simplest
weighting scheme consigts of powers of 2--tne elements e(i) would be
» multiplied by weight 21 (left-shifted i bit positions), for example. For a
,Q fixed-point system with numbers of length k bits, the sum would quickly
* overflow, so it is added modulo a specific base. Unlike the residue c?de, the
” base for weighted checksums is the largest prime number less than 2k+ . For
i 16-bit systems, this number is 131 059, and for 32-bit, it is 8 589 934 583.

To allow correction of errors, the weighted checksum vector must be

7:, augmented with a vector of unweighted checksums. Thus, as witsh residue

[1 encoding, if one checksum detects an error, the checksum is incorrect; if they
both do, the error in the data may be located and corrected. The weighted
checksums technique can correct errors in matrix multiplication with a matrix,

B vector or scalar, matrix inversion, and LU decomposition (by Gaussian
elimination).

38 5.3.3 Comparison of Fault-Tolerant Implementations

To compute any of the error-detecting codes described requires adder

ﬂ' trees to sum tne digits or elements. In residue encoding, an end-around-carry

\ﬁ is generated within the adders. In checksum encoding, the overflow carries

are thrown away. In weighted checksum encoding, each level of addition is

performed modulo the prime base. Thus, for residue and unweighted checksum,

aa the areas are almost the same for a length-n column of additions--0(n)--and

the add time 1is identical--0(log,n). For weighted checksum, each adder must

compare its sum to the base, and subtract the base if necessary. The adder

g} can also be wused for this subtraction, so the area remains O(n), but the
b: double add cycle means that the relative time is O(2logzn).

- In an nxn matrix with row Snd column encoding, the area-time complexity
ii for the first two cases is O0Ofn log.n). For the weighted checksums, 1t 1is
0(2n“log Keep in mind that for error correcting capability, the A-T

a).
product gf the residue is doubled, while tnose of the weighted and unweigh<ted
A cnecksums are added :ogether.

S SRR
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Another consideration is the ease with which algorithms may be adapted
to allow fault-tolerance. In the case of residue encoding, the residue digits

ke i o= R

¥ must be handled separately, which increases algorithm complexity. The
: checksums system, however, merely increases slightly the size of the input to
A the algorithm, with no special treatment given the checksums themselves.
"
"
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¢ i; Figure 4. The Fault-Tolerant Line Hypergraph [34]
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5.4 Systolic Array PE Study

* ;f Systolic arrays may be configured as shown in Figure 4. They include
} b rectangular, hexagonal, or linear systolic arrays. The most likely use for
? each configuration is indicated. In the application domain of beamformers for
K . towed arrays (for example) it is suggested by many researchers that a

a triangular array is preferable, Unfortunately. all currently available
¥ systolic arrays including the NCR GAPP (Geometric Arithmetic Parallel
2 . Processor), incorporating 72 PE's are configurable in rectilinear (6 X 12

A . . . . . .
o of units) not triangular fashion. Hence, a triangular array configuration
K Y although optimal from an algorithmic standpoint (e.g., recursive LS) does not

efficiently utilize commercial arrays.

MATRIX-VECTOR MULTIPLICATION
SOLUTION OF TRIANGULAR LINEAR SYSTEMS

w3

sl DENSE MATRIX-MATRIX
JEEE S MULTIPLICATION/ADDITION

LEAST SQUARES SOLUTION VIA
OATHOGONAL TRIANGULARIZATION

,51

1 N

N LU FACTORIZATION OF
e MULTIPLICATION-ADOITION ORIZATION

RS OF BANDED MATRICES SANOED

),

- Figure 5. Systolic Array Solutions
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ag - Our methodology was to map & class of algorithms onto & non-existing
i machine. To do so, we must first specify the design constraints such as
i circuit switching speed, propagation delay throughput, maximum number of
uh‘ gates, etc. Next, we must bound the algorithm classes. Within each class we
2. . should first determine the greatest common denominator or building block. In
N E} adaptive signal processors, the inner product processor appears to be a
5' O suitable common denominator and starting point. Our strategy then 1is to
My derive near optimal algorithms invoking this Dbasic signal processing
operation, and <then map the fast algorithms onto new VISI c¢ircuits. of
da g% course, not every algorithm may be based on this sole operation.

.. The methodology 1is a <two-step process. In the first step, we want %o
e obtain fast adaptive signal processing algorithms. Here we will bound the
i} problem to study recursive and non-recursive adaptive algorithms. During tnis
step, we will be sensitive to the computational processes which are expensive,
bt} such as matrix manipulations. Realizing that recursive algorithms contain
» basic computational tasks, identical to non-recursive algorithms, we will
begin with non-recursive algorithms. Here, we want to identify inherent
parallelism possible with adaptive signal processing algorithms.
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The inherent oparallel nature of an algorithm is then displayed by
mapping the initial adaptive algorithm into &a sequential aset of tasks
<, (commonly called "straight-line" algorithms) to be represented by a directed
- acyclic flow graph (DAG), each node being a task (multiply, divide, etc.) and
each edge or vertex representing a data dependency relation. That is,
briefly, predecessor nodes compute data needed by their successor nodes. From
this grapnical setting, we can reduce the longest or critical path by hand (if
obvious) or by computer (using well-knmown graph reduction algorithms, c.f.
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5} . Chapter 6 of [55]). Any concurrency so identified will provide us with speed-
R~ jg up via parallelism. One method to obtain concurrency is to use the adjacency
:‘: " matrix of the flowgraph to compute the earliest and latest precedence
3.- relationships. Map these onto a resource matrix (machine environment such as
) l: number of adders, subtracters, multipliers, convolvers, etc.) to identify
v " concurrency. Another method is the divide-and-conquer scheme proved
'2 B successfully in polynomial multiplication.
o ;2 To date, the complexity of most signal processing algorithms has been
?’ A estimated from their number of multiplications and sometimes from their number
£ of additions. This 1is not always prudent. In fact, we should say =an
A 5% algorithm is deemed to be efficient if its final implemented form takes
r~; v minimal time. The execution time consists of data snuffling operations as
L well as arithmetic operationsa. Hence, algorithms with fewer mathematical
$j - operations alone may not always be the best in its final implemented form.
2 te Fast algorithms identified in this step will most likely be modified later to
By - insure optimal implementation. However, these initial results will serve as a
" good starting ©point. The best approach seems to be to first design an
-F algorithm which is efficient in terms of the number of mathematical
i} operations, and then modify it to take full advantage of VLSI characteristics.
N As Lamagna |[56] has pointed out, "The straight-line algorithm paradign
2 C; neglects the cost of the overhead associated with loop control and testing
e operations, as well as the time required to fatcn and store information inside
' . a computer's memory. These costs can vary greatly from computer to computer
;i :3 and will not even be the same for two programming language compilers
% ro
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implemented on the same machine. Fortunately, the overall times of tne
algorithms studied are driven primarily by the underlying structure of the
arithmetic operations performed, rather than such overhead considerations, so
the results obtained are generally accurate to within a small constant factor
for actual implementations.”

A second step is to organize the VLSI for the fast adaptive algorithms.
One basic building block is the inner product processor. Rectangular and
hexagonal geometries can be incorporated. We intend to organize the inner
product processor as efficiently as possible in array structures in order to
capture the inherent pipelining, parallelism, and recursive nature of the
adaptive signal algorithms. We anticipate that cyclic convolution and a
cyclic convolver may be quite beneficial in casting the algorithms into VLSI.

The basic multiplication step itself was examined. The employment of
distributed arithmetic implementation [30,57,58] successful for fixed-point
digital filters was evaluated on an area x time basis for adaptive algorithms.
Because adaptive algorithms, like filter algorithms, are essentially finite
state machines, the multiplication and addition steps can be replaced by a
partial table 1look-up of precalculated products. The analysis is, then, a
trade-off between multipliers and memory space on the chip. This comparative
analysis is not trivial since the recursive nature of IIR adaptive algorithms
forces us to compute an entire result before reloading data registers
(temporary scratcnpad space) to generate the next table look-up entry.
However, some pipelining is possible and can be exploited as much as possible.

A tentative method to wire up the algorithms is to use the “evaluation-
interpolation"” method successfully employed in [59] to obtain (area X time)
optimal convolvers by observing the necessary algebraic steps and polynomial
evaluations that can be cast directly into a parallel computational process.
These algebraic steps, as organized, nicely prescribe optimal VLSI structures.
Computational tasks can be divided into those circuits which are amenable to
regular and simple interconnections and those which are not. Matrix
multiplication tasks obviously can be regularized. ADC, DAC, and other analog
computational tasks are not amenable to regular structures as we presently
know them. The control circuits (such as found in firmware-oriented
architectures) are amenable to regular implementations.

5.5 Error Tolerant Design with Multi-Valued Logic (MVL) Circuits

In this research, the effectiveness of MVL circuits realizing signed
binary number arithmetic must be considered with respect to the inherent
fault-tolerance of MVL circuits. Polylogic logic circuits, of which MVL is
one case, have been studied by Porter [60] for intrinsic error tolerance. Our
work plan is to wuse his technique to prove out low rejection rate and/or
reduced component strirgency requirements. Here, logic circuit failures (such
as "stuck-at faults”) and the effects of resistor, capacitor, and inductor
error values (necessary for hybrid signal processors which incorporate ADC's
and DAC's) should be studied. Note tnat ©possibly small fluctuations in
component values are not appropriate for binary circuits; however, they are
quite relevant and natural in MVL. Polylogic families include binary, multi-
value, and threshold logic.
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“ The procedure is to define a finite alphabet (R) and identify the set of
all possible values of switching tuplets (RP). Then, multilinear mappings
onto the finite R are sought which eventually produce polynomic realizations
of tne desired switching function. The major question is, "Does any mapping

- -
I

:‘ .- exist, if component errors are modeled and included in our polylogic MVL
s: }Q subset?" Porter has already shown that such mappings exist and, in fact,
:' N several do. Hence, a circuit designer can choose among the more optimal
N circuits, performing engineering trade-offs as needed. This 1is the

flexibility possible 1in this research to obtain fault-tolerant MVL circuits
that are optimal in tne sense of circuit complexity, power, and speed.
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y 5.6 Design for Testability
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Efficient test generation for logic circuits is a matter of prime
importance [61-63]. Yet most major fault detection problems are to be NP-
complete, generally. MVL is no exception. Hence, design for testability is
necessary. Built-In-Test (BIT) circuits are highly desired. The study by
Fujiwara and Toida [64] can be used to compare our fault-tolerant "testable”
a W2 designs with their benchmark complexities. They also provided clever
h g procedures to insert a few additional test-points into an arbitrary circuit to
. make it easily testable. Heavy use of PLA's is made. Their studies show that
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I some circuits (linear circuits, decoders, parallel adders, ...) can be
VIS "tested” in polynomial time.
Y | )
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5.7 Redundancy for Increased Yield

‘5

i Typically, for a new and complex device, most of the chips from a
manufacturing batch contain defects. The yield is quite low. This can affect
both cost and reliability.

S

During the fabrication process, defects that can result in faults can
occur at any time during processing. For a chip at N circuits, there will be
'5 1. fault-causing defects introduced during fabrication process step i. In
5 all we can expect to find L= I 1_; fault-causing defects (14). If all these
defects are Poisson distributed, then the yield will be given by

* w

' Y = b (14)

oy b

assuming random point defects are our only yield detractors. In general,
N §; fault-causing defects will not be randomly distributed but will be clustered.
f i Furtnermore, the clustering nature will vary from step to step. Nonetheless,
i the assumption of gamma distributed defects, where the same clustering
g N parameter, a, characterizes all the defects, leads to the following yield
¥, -: formula (15) that has been successfully used to model a large body of data.
. Y = (1 +1,/a)7" (15)
L] h_

& s where L, is the average number of fault-causing defects per chip. In the
N limit that a--> oo , (15) reduces to (14). 1In actual situations, a is
. typically in the range 1/2 - 4, and the yield can be appreciably better than
* ii predicted by (14). In tne case of redundant designs as may be required for
" Wafer Scale Integration (WSI), the calculation of yield becomes more complex,
:’ e and the role of <clustering and correlation of defects becomes even more
v ':.‘: important.
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Yield projections are a primary consideration in wafer scale
integration. Ketchen [65] develops a point defect yield model for a two-way
s redundancy scheme appropriate for random logic. The model assumes that the
fault-causing defects are randomly distributed locally but that the defect
density can vary across a wafer as well as from one wafer to another. Tne
importance of the distinction Dbetween on-wafer and wafer-to-wafer variations
in defect density is demonstrated. This model demonstrates tne dependence of
yield on the nature of the defects, and, together with gross yield estimates
and the appropriate nonredundant yield factor, it will serve as a good
starting point to model actual yield data. The existence of complex local
correlations and some non-point-like detects will clearly complicate matters;
although, in many cases, a perturbative approach is adequate to model the
situation.
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Redundancy can be used to improve the yield significantly. Such methods
are commonly wused for memory chips. Faulty components are left out of final
interconnection. The strategies used include eliminating affected row and
column, or eliminating the affected half. A processor array can be
reconfigured in more complex arrays [66-68]. To obtain an array of specified
dimensions, one would then start with a larger and thus redundant array.
Redundancy does not always increase the yield, because the larger chip area
required tends to decrease the yield. Using Koren and Breuer's approach [66],
expressions for yields for both simple and fault-tolerant arrays can be
obtained, and optimal designs which maximize yield can be obtained. Faults
affecting both PE's and interconnections have to be considered.
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5.8 Fault-Tolerance for Higher Reliability

o«

ﬂ
Dynamic reconfiguration can be used to overcome hard faults occurring in

amanze
‘a"

= the field. Before any PE's are removed from active configuration, it would be
oy necessary to detect such failures. To control error propagation, such
!5 detection should have low latency (time between error occurrence and externmal
o 3 fault manifestation). For concurrent testing, duplication is the most
;'- effective technique; however, it can significantly reduce yield. It has been

2

shown that some self-checking with 1limited redundancy can significantly

}‘,‘ bt improve yield [66].

Dynamic reconfiguration in processor arrays can be done in different
B 3! ways [67]. Because reconfiguration results in fewer PE's, there is sonme
LN degradation in performance. The effectiveness of different schemes depends on
W efficiency of partitioning of algorithms for execution on reduced size arrays.
~"_ ~ Trade-offs between reconfiguration strategies must consider optimizing,
e jb reliability, coverage, performability [69] and computational availability.
§§ Processor arrays can support a special form of fault-tolerance. in
d‘ real-time applications, successive data points can exhibit considerable
3$ W correlation. A sudden and significant change in a point array may suggest the

onset of a soft (temporary) or hard fault. Correctness of the value can be
confirmed by recomputation (which is a form of time redundancy); however, tre
same faulty hardware, because of a hard or a long soft fault, is likely to

-

KK generate the same incorrect result. However, 1in a processed array,
s. a recomputation can be done by mapping the process to a shifted set of PE's. In
sb' ﬁg this case, a faulty PE will almost always generate a different result.
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' A considerable degree of fault-tolerance can be achieved by encoding
l information. Kuang and Abraham have doscribed a scheme for matrix

N multiplication with processor arrays whicn requires only limited hardware and

time redundancy [52]. Suitable SDNR arrays are available.

%
s

Y 5.9 Hard/Soft Errors

Reliability with respect to hard and soft faults will be considered
separately. While methods exist which use the same measure to include effects
o of both types of faults, such a measure can be hard to interpret.

-~
(3
- -

For binary devices, the failure rate 1is generally estimated by using
techniques in MIL-HDBK 217 and its wupdates. The fact that the learning and
the quality factors alone can change the result drastically suggests that

)
e -
"
559

K SR exact results can not be expected. By characterizing L (see Section 5.1.1)
o itself by a statistical distribution, these limitations can be taken into

. account.

'.'

It can be expected that the failure rate data for binary devices 1is not
directly applicable to ternary devices. The physical degradation, that will
- not cause a logical failure in a binary device, may cause a failure in a

o
[ 2

K }: ternary device. On the other hand, a ternary device uses fewer logical nodes,
! g interconnections and specialty pins, which can significantly enhance
'$$ reliability. How the available data on failure rates for binary devices can
\':f. i be adapted for ternary devices will be a problem to be examined.
. The alpha-particles have been a major cause of soft failures. However,
25- - now they can be very effectively combated by proper cnoice of encapsulating
SN material and by coating. Also, the new CHMOS technology is remarkably robust
%; oz against alpha-particles. Various types of noise [70] remain a problem. Here
Wy reduced noise immunity makes noise an important consideration. Soft failure
‘: rates due to such causes can be estimated satisfactorily, but assumptions
nt R remain to be examined.
M
).’ :ﬁ 5.10 Design-For-Testability and Built-In-Self-Testing
f » fad]
45, A Efficient test generation for 1logic circuits is now recognized to be a
. matter of prime importance [61-63]. Yet most major fault detection problems
‘$' ;! are generally NP-complete. The proposed MVL PE array is no exception.
. LS
iﬁﬁ In a regular array, there are two major testing considerations. One is
t . how to test a single PE element, assuming its inputs and outputs can be
}n, i: directly accessed. Next, part of the problem is how to exercise each PE
' element when they form a regular array. Some arrays possess a special feature
v, ~ called C-testability [71]. A C-testable array can be tested by wiring a fixed
'i} 2- number of tests, regardless of the dimensions of the array. It has shown that
e . often arrays yhigh are not C-testable, can be made so by using only minor
9 t modifications _[72;.
PRl

"

Several scan-path techniques like L3SD have been suggested. These
reduce the problems of testing sequential circuits to that of testing purely

» NS o
- combinational circuirts. This enormously siaplifies test-pa<ttern generation.
'QQ :i The scan-path techniques are also applicable for PE arrays. An implementation
4. n. ‘e
o
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has been described for a CMOS, two's complement serial convolver chip [73].
Applicability of Ternary-Scan-Design, as proposed in [74], for our propoaed
scheme is relevant.

The study of Fujiwara and Tioda _64) compares fault-tolerant "testable"”
design with benchmark complexities., They also provide clever procedures to
insert a few additional test-points into an arbitrary circuit to make it
easily testable. Heavy use of PLA's is made. Their studies show that some
circuits, decoders, parallel adders, ... can be "tested” in polynomial time.

Built-In-Self-Test circuitry allows a device to test itself without
using expensive test equipment. It is also valuable for assuring device
integrity in the field. For a PE array, BIST must be incorporated within each
element. it is also necessary to have the necessary circuits to support BIST
globally so that the interconnections are tested, and also the go/no go
information is routed to some external output Or outputs.

5.11 Information Redundancy

Low cost residue and 1inverse residue codes for error detection in
signed-digit arithmetic were proposed for this project. These codes
capitalize on the fact that they can be used to check storage, transmission,
and computing functions using the same checking algorithms. These algorithms
compute the module: a residue of messages, operands, and results in a serial
or parallel fashion. The residue digits are then tested to indicate whether
or not an error exists [50].

As noted by Avizienis [50], the effectiveness of Signed Digit Resadue
Codes (SDRC) can be assessed by obaerving that undetectable errors are caused
only by faults th%t change the value of the signed-digit number by a multiple
of 2°-1 (where 2° is the radix). Such changes are highly unlikely. A
detailed study of effectiveness requires the full xnowledge of tne internal
representation of digit values and an analysis of the effects of repeated-use
faults when they may affect the operands or the result.

The algorithms proposed in [50] only employ one residue digit for an
entire K digit SD operand. While this minimizes the cost of encoding, it may
be inconvenient in variable-precision operations that generate the most-
significant-digits of tne results first and that are ‘"chained”, executing
further operations on high-significance-digits of an intermediate result X
even before the lower-significance-digits become available. The Serial
Checking Algorithm is completed only after all digits of X have been obtained,
tne residue digit X is tnem computed and compared to test for the presence of
an error.

An error indication requires the cancellation of all results that have
used at least one digit of X. The cancellation must reach k+3 digit levels
downstream in the chain and 1dentify all potentially erroneous results. Two
solutions may be applied to shorten the "sapan” of the cancellation that must
follow an error indication: {(a) the segmentation of orerands into check
segments, and (b) single-digit encoding that employs a checking element
within eacn aritnmetic unit that performs single-digit operations.
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Segmentation divides the k-digit operand 1into check segments of p
digits length each and attaches one residue digit to the rignt end of eazh
check segment, vrather than using one residue digit at the end of the entire
operand. The cancellation span is reduced to p+3 digit levels downstream in
the chain. Furthermore, error detection effectiveness in the case of
repeated-use faults may be 1increased because of the snorter lengtn of tne
segment being checked. The cost of segmentation consists of the extra time
and storage required by the proliferation of residue digits.

Single-Digit Encoding appears most suitable for VLSI-implemented
arithmetic units that can execute the algorithms gor d}sits o} S-C
representations with relatively large radices, such as r=2~, r=2 °, r=10", or
even greater values. Here each individual S-D representation digit carries
its residue digit modulo (r°-1), where

r* = 29 yhen r = 2b. and b = kq (q>2) (16)
r* = 109 when r - 10%, and ¢ = kq (1) (17

The single-digit encoding approach _ is an extension of the segmentation
concept. Each digit of the radix r = 2~ is treated similarly to a k digits
long segment of the radix 24 representation that is checked by one modulo 24.
1 residue digit. The evident advantage of this approach is the pinpointing of
the error to the single arithmetic unit.

5.12 Hardware Redundancy

Some drawbacks of aritnmetic codes are their inability to detect errors
in logical operations, and single errors in group carry-lookahead structures
[47]. Th2 latter is not a problem if SBNR is used. Tris, hardware redundancy
has been recognized as the most effective technique to identify faults in
logical operations. In [47], Patel and Fung describe a technique in which
coding and decoding functions (in the form of shift left and shift right) are
employed. Here, the arithmetic/logic operation is performed twice. The first
time it is performed without shifting, and the results are stored in a general
register. The second time, the inverse shift operation is executed and tnen
compared with the contents of the storage register. A mismatch indicates an
error in computation.

The hardware redundancy technique described has been implemented in
binary number systems. Nevertheless, it is prudent to assume that 1t, or any
other binary technique, can be adapted to SBNR architectures. Of course, a
trade-off study of cost versus circuit complexity should also be completed.

The binary fault-tolerant ALU implemented by Patel and Fung can be
constructed using a CMOS family of ternary logic circuits. These circuits,
proposed by Mouftan and Heung L”Sj, use two power supplies, eacn below tne
transistors threshold voltage, and do not include resistors. All transistors
are 5 microm x 5 microm. Tne tnresnoid voltages for the p-channel and n-
channel enhancement-type transistors are =1v and +1v. They have opposite
poiarity for tne depletion-type devices. Witn the use of voltage gpower
supplies below the transistors turn-on voltage and the exclusion of resistors,
it is possible to implement tnis circuitry in VLI, Added features include
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‘ low power consumption, high speed, and comparatle perforzante to tn2.ir b.nary
. counterparts.
For tne ALU proposed in :4”3 to be fault-tolerant, tne encoder, dezoier,

and comparator circuitry must be Totally Self-Checking (TSC). They zan bte
. implemented with PLA's. One advantage of using PLA's 1s tnat treir regular
structure simplifies analysis of the effects of faults on their output ani
tnerefore facilitates test vector generation ani determination of faul=®

! coverage.
U

N . “
¢ The most elementary fault model used for PLA's includes tnree types of
" - faults:
' SRA
»
o’ 1. Stuck-at faults on an input line, product term line, or Output line.

2. A short between two adjacent or crossing lines that forces both of tnem <o
;; gc the same logic value.
&- 3. A missing or extra crosspoint device in tne AND array or in the 0JR array.

Since breaks in lines (that are not equivalent to stuck-at faults) are

. . r a N - N
one of tne main causes of failures in VLSI circuits . 76-77., it is clear that®

the above simple fault model does not accurately reflect the possible physical
defects in an MOS PLA. A more complete fault model is given in 78 .
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. 6.0 Research Results of Current Period
b
X i 6.1 SBNR Arcnitectures
0 This PI has been investigating the Least-Mean-Square (LMS) adaptive
A r
SR filter algorithm for signal processors k79—81]. Recently, these studies have
! S focused on redundant arithmetic implementations in distributed and syst>lic

. array architectures [20,82,83}. It has been discovered that some of the
; inherent borrow/carry propagation properties tend to make implementations very
compact and modular. This tends to suggest that fault-tolerant properties
abound for SBNR realizations. As early as the ILLIAC III, Atkins _8_ snowed
that higher radix implementations (of which SBNR 1s a reduced yet very
powerful subset) produced superior fault-tolerant arithmetic engines wnen

- e
-

¥ "..
f :: using redundant or signed number codes.
.
The papers in tne Appendix by corporate perscnnel nave demonstrated scme
« E: of the advantages to SBNR. Note particularly that others are identifying
j 4 similar advantages. Sicuranza and Ramponi _24  a&also exploit memory-orienced
- structures properly matching the characteristics of distributed arithme<tic for
MRS adaptive nonlinear filters described Dby truncated discrete Volterra series.
{ = Their use of offset binary code (a form of SBNR) ard address splitting
(available to SBNR) establisned efticient, altnough dedicated, architectures,
- . They, as well as us, show that the memory dimension is not (2”)‘ words
’J - because of the dramatic reductions possible with SBNR and syEEEtry.
3 Anotner promising approach to erficient 1mplemenzations of redunian<
RN nunber realizations is described by Cwens and Irwin :85:. Here, a primitive
i' cell, 1including 1ts operacion suite, are used 1n a DFT apglicat:ion
L demonstrating the highly regular array structures acnieving go20d AT" tounis,
{: . They partitioned functions 1ato “interface, 3%torage, or ar:ithmetiz’ %o
o impiement ii1git-on-line a.gorichas. We can  extlisit tne 3ame digit-cn-line
L
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ij * properties for wultra-fast processing of analdg 3s:1gnals. For example,

“ digital signal processing can begin as soon as the MSB (which is

‘ the first bit) is conve.ted by the ADC! For b:it serial distributed
'ﬂq arithmetic scnemes, andgrmgn CSG, has snown now clock rates of "C Mkz are
oY ossible here. Dgnygr .87 ,, Denyer and Rensnaw 3¢ _, Jaggernautn, 2%, a.,
{{ b# ."2., and otners 89  make similar promising 3discoveries about bit-ser:a.
’3' 0 imp.ementations. Particulariy encouraging_ 1s tne CUSP (digital signa.
T processor, VLSI, of Linderman, et. al. _3C_, since this de.1ce 13 a sixteen
2C-bit serial multiplier by 24 serial adder/subtracter, driven by a S. VHz

-‘-
3
50

two-phase non-overlapping <clock. This device again exemp.1fies <ne power of
oy birt-serial approaches.

! Design of SBNR Array Multiplier

el
>
L~3
[ 4
L]
"

Tre need for nign-speed computation nas spurred much Tregearcn
various forms of parallel prccessing. The two most common of these
2

A
s

- arcthitectures in signal processing appllca*tions are tne plpe.ined pricessor
o and the array processor. Developments 1n para.i.elism nave Dbecome quite
St popular witn tne revival of interest 1n tne Signed-Digit Number Representa<ion
Y ii (SDNR) characterized by Avizienis ' .. Implementation of the faster
architectures in VL3I is a concern for devices needing powerful processing 1in
2 gl limited space [e.g., mobile, self-contained and space-based venicl.es.
. g
“f o The design described below, and snown in Figure 6, 1s a sys*o.1: array
I for‘matrix multiplication which is compatible with digit online arcnitectures
?. - 9. This array 1is similar to one described by Irwin 32, in whicn *wo
'I vectors to ope multiplied enter the array most-significant-bit-first--the
o distinguisning cnaracteristic of online networks. The array uses trne
45 i Processing Element (PE), diagrammed 1in Figure 7, and shown scnematically 1in
ar ﬁ- Figures 8 and 3, *o perform bitwise vector multiplication. For matrix «x
'?" e matrix multiplication a parallel multiply/accunulate element may be
Wy substituted for the bit-level PE. In such a large scalie system, asynchronous
;; operation may be faster than the clccked method shown.
:(9 If the array is used for vector multiplication, it performs <ne
.t , operation
0‘:,' na
g« "&, a 1
s L_’ 2 se- AEJ .
o iRA % . o )
- BN = C, ownere T = ALE, ¢ ASB, ... F
N - . + A 3,
R : w
i X Em
=~ L=
)': r: Tacn vectsr elem=nt 13 A word conaisting of n osigned-tinary bits, Wwhere ea-r
{ﬁ; A c1t  may be a -, > or - ‘. Wren *tne  vettir  e_eTents
.
.

e
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Figure 6. Systolic Array Multiplier
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Figure 7. Functional Diagram of Array Cell
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- Figure 9. Carry Generation Circuit
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are expanded

into bat

representation, one can see tnat tne systolic array 1is

actually performing matrix multiplication on tne bits of the vectors:

The bits

A

of tne
right diagonals:

answer are

VRN AR B Y Rl e

A A
A ;A,_Jtt..nm Y _‘a'l‘.A"l

W 1,n=1 * *° B1.1
Ban1 * 0 Bap
En.n-1 e Bm.1

1,2 * *° i,n
2,2+ Cn

Cn.z e o o Cn.nJ

found by adding C along the lower-left-to-upper-

‘.J._.J!hA.L.A

(19)
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I c
c = c1 .1 C1'2 C1 .3 e« o ® C1 ’n Cz'n n-1 ’n n.n
+ 021 C2.2 e 8 @ . ) s e ® cn.n-.‘ (20)
* c3.1 e * Cn.z
+ c

To see how this happens, refer to Figure 6. On the first clock cycle, A

and B (tne MSBs of A, and By, respectively) are shifted into the bottdm

cell, hiltiplied, and added to ¢, 1 (initially zero). All the otner MSV's are

shifted into their first cells.’ On the next cycle, C1 1 shifts up, and adds

to the product of A, , and B, ,. The products C, , and 02 y are formed to the

right and left, respectively,” of C The entry Cg 5 i3 started just below
§74

C1 . Subsequent clock cycles shift’Lhe multiplican n, and the answer out
in’%he order shown in Figure 6.

The total time for this calculation is given by
T= (2n + m -1)t, (21)

where t 1s the time for each clock cycle. Since this 1is a digit online
network, calculation is started on the MSB's before the LSB's are needed.
Another significant measure of performance is the time between the entry into

the array of the MSB's, and the exit from the array of the answer MSB. This
time may be calculated by

TMSB = (n + m - 1)t. (22)

In VISI applications, the number of elements and the number of
interconnections are botn significant. These values are given by

2

N, -n° -2n + 2nm = m + 1 (23)
J o
and
NI = 5p° - 18n + 1Cnm - 9m + 12, (24)

Note that all of the equations are also true for the matrix x matrix

multiplication, in the fully digit online case. If the data are shifted in
parallel, more interconnections will be needed.
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6.1.1.1 Observations

Reports by Mouftah [93} and Aytac [94}, on which much of the PE is
based, indicate that the addition logic may be too slow for many applications.
The speed 1is not known absolutely, however, because tne logic gates presensed
in the reports are based on use of 5 um line widths. Implementation of the
array multiplier would be in 2 or 1 micron technology, which could result in a
significant speed increase.

Another possible problem is the transmission of two control signals,
carry and neg, through the array. Though these signals should be local, they
are not synchronized with tne clock, and may not be nearest-neighbor
transmittable, Further research into this problem will probably yield a
satisfactory local-communication solution.

Future work in tnis area could include a comparison between tnis network
and alternative matrix multipliers, including pipelined parallel or digit
online multipliers, binary and higher-radix implementations, and different
array configurations. In addition, the PE cell should be simulated using a
MOS simulation program, and characterized in terms of speed and area. Using
this data, or making logical assumptions about it, the speed and area of the
entire network will be calculated from the formulas presented earlier. In

addition, the speed and area of alternative PE's should be investigated and
compared.

6.1.2 Digit Online Vector Multiplier Using SBNR Adder Tree

In pipelined signal processing systems, the maximum rate of data flow
through the pipe is determined by the slowest element. Traditional pipelined
systems consist of a few slow elements, connected by parallel data paths. In
digit online systems [91], a redundant number system is used to allow data to
flow as a stream of bits, with the most-significant-bit leading the stream.

Irwin and Owens have identified many advantages to this mode of
operation. The first is that <the bit-stream approach allows the system to

perform bit-level operations on the data. Since the slowest of these
operations is much faster than the slowest word parallel computation, a much
faster clock rate may be used, possibly increasing data throughput. Tne

second advantage of digit online architectures is that result bits can begin
streaming out of a processor after only a small online delay from the start of
the input data. The result can then be used in the next processor. This
effect allows several links in the processing chain to operate simultaneously
on results generated from a single data word. Thus, the effective throughput
of an element is determined more by its online delay (latency) than the total
time of computation. The third advantage of digit online systems is that of
cnip pinout. Since the data are transmitted in bit-gerial mode, the number of
pins on a chip does not depend on the length of the data words.

Space Tecn has investigated a digit online multiplier that computes tne
fixed-point inner product of two vectors. The vector elements arrive
simultaneously on separate data patns in bit-serial format. The multiplier
can accept either the most- or least~significant-bit-~-first with no change in
calculation time. The answer bits appear in tne same order as tne input. The
multiplier uses Signed Binary lumber Bepresentation (S3NR) to allow fully
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parailel addition internally and to make it compatible with digit online
systems.

Inner Products

In many digital signal processing applications, the pr&mary function of
the processor is finding the inner product of two vectors: & b = c.
For two vectors a and b, each composed of m elements, a., and b., tne inner
product is defined as: . t

c= % a, b, (25)

When each element is defined by an n-bit signed binary word, the vector
multiplication can be decomposed into a matrix inner product on the bits of
the vectors. Thus, if each element 8, is represented as

a, = £ 2%a,, k (26)

then the inner product of the vectors can be rewritten as

n-1 n-1 K
I 29% &,k by, (27)
i=1 k=0 j=0

It is this function that the vector multiplier implements.
6.1.2.1 Vector Multiplier Structure

Figure 10 shows the architecture of the vector multiplier. The bits of
vector A appear on the m-wide bus at the top. When the first bit appears, the
MSB line is brought high, thus latching the MSB's of A into the first partial
product cell. At tne same time, the first bits of B éSpear at the cell (AB1),
and are multiplied by the corresponding bits oflé.'_The results are added, and

tne sum appears at the bottom of AB,. The architecture for this operation is
similar to the Takagi multiplier [951.

In the next clock cycle, the MSB signal is latched to the right, thus
latching the bits on the A bus into the second cell. The MSB's of vector B
also latch into the second cell, and the next bits of B appear at AB1. Thus,
AB, contains A and B , while AB, contains A and B . These partial
préducts are Haf calcuTBild.  The product from” the fiTat cycle is latched
into the top of the adder tree.

On the third cycle, the two second-level partial products from AB1 and
AB, are added together in the m-wide parallel adder. The B bits are righ:-
snifted, and the thiru bits of A are latched into AB,, The MS3B partial
product moves down to the next-level adder.

3
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Similarly, each subsequent clock cycle generates tne next-lower b
position of the product. Each of these cascades through the adder tree unt
it hits the data skew block.

-
9
«

1
1

The function of this element is to shift tne incoming words %o tne:ir
proper bit position in the result. The skewed word is then added o the
cumulative sum to produce the final sum. The result is shifted out of tre
bit-select latch.

6.1.2.2 Area and Time Complexities

The area and time factors of this multiplier age excellent for single-
chip implementation. The area complexity is O(mn+m“), whicn is better than
that of the bit-level systolic array [96]. The time for calculation is 2n
clock cycles, but the latency is just n+log,n, and is not dependent on m. For
the case of m=16 and n=16, this multiplier takes 76,600 transistors, which is
half tne number needed for 16 paralleled Takagi multipliers. If tne latency
were reduced to something less than n, the next stage of the pipeline could
operate on the inner product as it was being calculated. This reduction may
or may not be possible, however.

In addition, the architecture seems too hardware intensive for a
pipelined systen. Further research should be done to try and use recursive
properties to reduce or eliminate the full-parallel elements and/or tne adder
tree. The next step is investigation into alternatives, specifically, a
structure lixe that proposed by Rhyne and Strader [97]. Any alternatives
found should be characterized with respect to this and other architectures.
If none are found to be better, more comparisons should be made between this
multiplier and the alternatives.

6.1.3 Systolic LMS Architecture

Recursive least-mean-square algoritnms have wide application in many
types of estimation problems. One such application is adaptive beamforming.
Beamforming is commonly used in radar and sonar applications, both in
transmitting directed wavefronts and receiving from selected directions.

A trade-off exists between the speed of adaptation and the stability of
the formed beanm [98]. In general, the more recursions needed for adaptation,
the more stable is the steady-state performance. However, an increase in
system throughput will speed up the adaptation without affecting the steady-
state stability. The architecture proposed by Space Tech provides tne
increased throughput needed for high bandwidth communications.

f.1.3.1 Recursive LMS Algorithm

Widrow's LMS algoritnm consists of an adaptively weignted input stage
gnd’a weight update stage. We m:-uified the algorithm to allow pipelining
.37 ,, but the archnitecture included two systolic array processors. An
alternative design wuses a pip:linable algorithm, but only a single systolic
array. To see how tne algorithm works, define the following variables:

KA .
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= gystem word length in bits

= number of receiving antennas

= k x n bit matrix of input samples

= Kk x n bit matrix of weighting coefficients
bit vector of filter output

= bit vector of input reference signal

=d -y = bit vector of filter error

= convergence rate factor

iclo ok = n = %
[ ]

(The value of a bit vector is just the vector multiplied by powers of two:
y o= Dokt k=2 ot 0T g

The output of tne filter is given by
y=stw (28)

The filter weights, W, are determined by iteratively comparing tne filter
output to the training signal, d. This difference, when multiplied by the
input matrix, gives the line of steepest descent toward convergence [984. Tne
equation to calculate the new filter weights is

wJ = WJ_1 + 2uej_1Sj_1. (29)
Left multiplying this equation by the current input gives

s.Tw. = 5.Tw. . .s.0s
i "3 ™S5 Myt 2uey S

If we assume that the inputs are uncorrelated (i.e.
E [Sj S‘j*1] = Q), then we can make the following approximation:

51

T T T
S. W, = . . . .°S..
3 W5 = STy Wiy + 2uey ,S47Sy (30)
Andrews implemented a similar function using two systolic arrays, one to
calculate y. for S., and one to update W. .. The architecture below uses a

—— ’ -
single systalic arrﬂy, combined with a smali Aumber of latches, serial adders,
and serial multipliers. Also, since the weights have been removed in Equation
3, no weight-update pnase is required.

6.1.3.2 Architecture Details

The arrangement shown in Figure 11 implements the LMS algorithm of {30..
The systolic array multiplies the input by itself, S°S. The outpu®t from tne
array is on K parallel lines, all of equal significance. Thus, at any clock
cycle, each line carries a value in the same bit position as all the otner
lines.
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These wires are fed 1into a synchronous, bit-serial adder tree tnat
accumulates all of ghe partial products. The result of this accumulation :s
the inner product 5SS, which is fed into a bit-serial multiplier Zt tne sarme
time as tnhe product ue. The x2 factor results from bringing S*S into tne
multiplier one clock cycle ahead of ue, thus performing a left shift on the
product. The resulting value is the steepest-descent gradient of the error
surface. The new output is formed by adding the error value to the old
output.

If all arithmetic is performed with length-K operands and results, the
latency of the architecture is

latency = N + log2K + 1 (31)

and a new sample may be entered every K clock cycles. The clock period is
determined by the speed of the serial multiplier. If Signed Binary Number
Representation is wused, all arithmetic inside the multiplier may be done in
parallel, with a total delay of 35t, regardless of word lengtn (t = delay of
one transistor). Total device count for the circuit is:

KxN Multiply - accumulators
K+1 Serial adders
2 Seriel multipliers

Kx(N+2) Latches
Thus, the device-latency product is O(NZK + NKlog2K).
6.1.3.3 An Adaptive Beamformer Application

Digital adaptive beamforming is commonly applied in communications.
Applications range from voice communication over VHF/HF bands in the tens of
kHz u to secure spread-spectrum data links with RF bandwidths in the 10 MHz
area 699]. The latter case places strict requirements on the throughput of
the processor. To allow sampling at the Nyquist rate each link in the pipe
must have a bit delay no greater than 50/K nsec. For a 16-bit word length,
eacn Processing Element must accept a new bit every 3 nsec, corresponding to a
clock rate of 333 MHz.

This rate would be extremely difficult <to sustain if the circuit were
spread over a large board. Fortunately, the proposed architecture is
primarily a systolic array with an adder tree, so the interconnections are
regular and nearest-neighbor. Thus, most, if not all, of the circuit may be
implemented on a single VLSI chip.
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6.1.4 Time and Area Calculations for SBNR Array Multiplier
‘ This section describes Space Tech's studies of a systolic array

architecture which wuses MVL and a 3BNR to multiply two vectors. Tne
. architecture is compatible with digit online pipelined networks _3' :in wnicn
Q§ data are transmitted serially and moat-significant-bit-first. Tne array
L structure makes chip layout easy, and the local communication paths reduce

interconnection area. Therefore, tnis systolic array snou.d bte easy =
! implement in VISI.
’.

6.'.4.1 Array Structure
.
y: The fundamental operation performed by tne processor 1s tne ~veliorT
> multiplication
r_ LA, A~ ses A 1
>* 172 m 1
A B2

. = C = A B, -+ * ... * AB 1z
- 149 A282 n'm s

2 B
L
7> maximize speed, one can use A& 8ystolic array of PE's in which many bit-

level calculations occur simultaneously. Such a structure is shown in Figure
12. In tnis case, tne vectors are four words long, and tne words are tnree

i bits long.

Vectors a and b are shifted in from the bottom, most-significant-bit-
first. The result ¢ comes out the top, as snown. All carries from additions
are transmitted asynchronously to tne upper right of each cell. Tre PE to the
upper right always holds one portion of the next-higher bit. The "horn"” that
extends up and to the right from the central multiplying core ia present %o
'! add up the carries from lower-order bits. (Since the array uses SDNR
J arithmetic, a cell's carry depends only on its operands and the neg control

signal from the lower cell, and not on the carry coming in to the cell. This
y limits carry propagation t0o & single cell, .nd gives signed binary a
significant speed advantage over conventional binary.) As the answer 1is
shifted out of the top, an adder tree adds up the bits that occupy each
position of significance. The final result is then snirted out of tne adder

W

Y

tree.
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The method of operation £ trhe array is srown 1n Figure 13. Cn <ne
first clock cycle <(Figure '3a;, tne MSB's of A, and B, are snifted intu tne
bottom <cell and wmultiplied together. The result is added to C, (initially
zero), and the carry travels up and to the right wnere it is added to C_
(also zero,. A control signal neg is also propagated to C_ to be used in the’

ddltlon. At tne same time, all the otner bits in ta first row (A, .,

ees and B , ...) are shifted into their first cells aAd

32 5
ﬁ'%lplled by ze2 3.2

o,

On tne second clock cycle {(shown in Figure 13b), the new C, ani C are
snifted up, C, is added to x B , and that carry is addeé to C

K

before. Any carry generated %tom the“term (C5 + 0) propagates up and %o tne
right into C6' In addition, the terms

C, = A x B {37)

~ = I I
Cs A1,2 x B1’1 (34

are generated just below, and on either side of, C,. The shift registers a-<
tne top of the array ensure <that all bits of a given significance arrive
simultaneously.

The equations Dbelow give the number of different cells required tc
construct a systolic array that will multiply two m-word vectors, where eacn
word is n bits long and is represented in S3NR. The number of zmultiply-
accumulate PE's (hexagons in Figure 12) is given by

PE = 0 + (2n-1)(m-1); (35)
the number of adders (diamonds) is
Add = 1/2 [ n(n-1) + (n+m-1)(n+m-2) - 1 ]; (%6)
and the number of shift registers (squares) is
Reg = (3n+a-4)2 + (n+m-2). (37)
The total multiplication time for the array is
T = (2n+m)t, where t = clock period. z8)
In pipelined systems, another important measure is the latency--tne time

from the start of <the incoming data to the start of the outgoing. For <tne
array tnis number is

\()

(n‘m)t- <3

Thus, the MSB's of the vectors are clocked 1in, and  n+*m) cycles later, the
answer MSB 13 cliocked ou*t. Every cycle after <hat, two more bits can te zaie
available, or they can be buffered and streazmed out. The latter metnoi gives
a tctal mulsiply tide of Zn+m. cyc.es.
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6.1.4.2 Processing Element Circuit

The tnree types of cells needed, tneir functions, and their I/C patns
are shown 1n Figure 14, Figure Y4a 18 the Ternary Multiply-Accumulate Cell
(TMAC), which forms tne core of tne array. Part b is a PE which does nc:
multiply any numbers, it simply adds the previous sum to zerc and generates a
new sum and carry. The shift register in Figure 3¢ is used to align carries
with new rows, or to align the answer bits at the output.

The TMAC in Figure 14a multiplies the incoming A and B bits, and adds
them to the incoming sum C. The output signals, carry and neg, are
generated from AB and T for use in the PE to the upper right. The next C is a
function of AB, C and the carry and neg signals from the lower-left PE. Or

the next clock cycle, the sum and two multiplicands are shifted to the next
higner cells.

The ternary adder cell in Figure 14b adds tne incoming C to zero, since
there is no AB term. In SDNR, wunlike binary, this addition can generate a
carry. So the adder cell operation is the same as tnat of the TMAC, except
that no multiplication is necessary. As a secondary function, if the adder PE
is 1n tne patn of the B coefficients, it acts as a shift register for them,

The ternary latch cells (Figure 14c) act as one-cycle delays for
wnatever they are latching. Scmetimes a latch cell will transmit a C value
vertically. Sometimes it will take a carry from one column, and turn it into
a sum, C, in the next column. The latches that are in the path of the B
coefficients will also shift them.

Figure !5 summarizes the ternary CMOS logic gates developed by Mouftah
:93:, Huertas [100], and Balla [101] that were used in the design of the PE's.
Also shown 1is an S-gate (switch gate) which is a pair of transmission gates
that pass one of two inputs based on the control signal.

The circuit wused to implement the TMAC, and its truth tables, are shown
in Figure 16. The inputs are latched into the flip-flops at the bottom. From
there, A and B are multiplied and tne neg signal is generated. Using A, B
and C, the TMAC generates the carry, and with the carry coming up from the
next lower cell, it generates the sum. The total time, from thne rising edge
of the <clock to the stable sum, is no longer than 17 transistor delays. This
amounts to about 17 ns in 5 micron technology. During the low phase of the
clock cycle, A and B are latched into the outputs. The sum is not latched
because it will stay stable for much longer tnan tnhe latches of tne next cell
require to shift it. The TMAC uses 212 transistors.

The circuit for the adder (not snown) is simiiar to the TMAC, except
that the circuitry which multiplies A and B is gone, and all inputs with A, B,
or AB are grounded. Some of tne combinational logic is also simplified. The
adder uses 98 transistors.

The latch circuit consists only of two flip-flops. One latches a value
in on the positive clock level, and the other latches it out when the clock is
negative. The latch circuit requires 32 transistors.
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6.1.4.3 Observations

One can calculate the number of transistors needed to implement a
specific array using the equations of Section 6.!'.4.!'. The total number is
given by

transistors = (PE)(trans. per PE) + (Add)(trans. per Add) (40)
+ (Reg)(trans. per Reg)

Table 3 gives the number of CMOS transistors in the array for different vector
sizes and word lengths. Those readers who are familiar with current VLSI
capability will recognize that, despite a highly regular structure and low
interconnection area, most of the numbers given are larger than can be
implemented on a single chip. Even among those that are small enough, tnough,
tne chip yield will be rather low.




Table 3. Area and Time Data for Systolic Array

i Word [Vector; Sys. Array,Time, 1Sys. Array Multiplier,
| Length)Lengtn| Number of | to,|Tota}|Area-Time |Area-Time |
| _n__ | m _{Transistors,MSB (Time ; Product, | Product |
A T 16 | 130,933, 24 32 | 4.20x1OZ T 1.45x1og‘T
| P32 275,205] 40, 48 | 13.2x100 | 2.90x107 |
' 8 ! 64! 688,165] 72! 80 ! 55.1x10% ! 5.80x102 !
' vits | 128 | 2,011,749 136! 144 | 290.x10% | 11.6x10% !
! I 256 | 6,649,573 264! 272 | 1.81x10? | 23.2x1og !
! | 512 | 23,887,845! 520! 528 ! 12.6x109 | 46.4x10° !
? E 16 i 172,597{ 26! 36 E 6.21x1OZ ; T
( i 32 339,717, 42, 52 | t7.7x10. , i
b oso Y sat 798,3730 74! 84 ) 67.1x10% ! !
| bits | 128 | 2,213,349 138} 148 | 328.1108 | |
: } 256 : 7,0339957} 266: 276 = 1-94X109 } :
i | 512 ;) 24,637,797, 532, 542 | 13.4x107 | i
; E 16 E 219,0455 28{ 40 j 8.76x10§ i ;
{ ‘ 32 : 409,013= 44‘ 56 : 22.9x106 } :
: 12 : 64 : 913s365: 76; 88 { 80-4!106 ; :
| bits | 128 i 2,419,733| 140[ 152 | 368.](10 | |
: ! 256 | 7,423,125! 268! 280 | 2.08x10? ! !
| | 512 | 25,392,533} 534, 546 | 13.9x107 | :
5 E 16 [" 270,2775 3oi 44 ; 11.9x10§'f* j
: ‘ 32 : 483,093{ 46; 60 { 29.01106 } {
! 14 | 64 | 1,033,141| 78‘ 92 | 95.11(10 \ |
| bits | 128 | 2,630,901} 142] 156 | 41o.x1og | |
I { 256 = 7,817,077: 270‘ 284 } 2.22)(109 || I|
| | 512 | 26,152,053} 536! 550 | 14.4x109 | !
T 16 326,293, 32, 48 | 15.7x10° | 10.0x1OZ |
I | 32|  561,957! 48! 64 ! 36.0x10% | 20.0x10% !
I 16 | 64! 1,157,701 80! 96 ! 111.x108 | 40.0x106 !
| bits | 128] 2,846,853! 144! 160 | 455.x10% | 80.0x102 !
i i 256! 8,215,813 272! 288 | 2.37x10? ! 16O.x106 '
. | 5121 26,916,357! 538! 554 ! 14,9x10% | 320.x10° |
*

in clock cycles.

Unfortunately, thnis extra space does not buy a faster processor. The
time for a 16-bit multiply of length-16 vectors is 48 clock cycles. That
amounts to about 816 ns. The time for the same multiply implemented with 15
parallelled 16-bit multipliers [95] is 120 ns. That multiplier setup requires
only 350,000 transistors, a 3size increase of 10 percent over the array. Ten
percent is a small price in area for a seven-fold speedup.

To compare area and time trade-offs, one uses the area-time product.
The second column from the rignt in Table 3 contains the area-time products
for tne systolic array. The last column represents the comparative numbers
from the Takagi multiplier. Note that at the closest, these numbers are
separated by a factor of 1.5, and that that distance increases with vector
length.
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o This relationship is easily seen from co%p letles of the two
E architectures. The area of the_systolic array is O n“+m“), while the area of

-
L J

the parallel multiplier is O0(mn“log,n). From this, one can see that the area
of the multiplier increases faster with n than the area of the systolic array.

-

£ . Unfortunately, the array starts out so much bigger, and the multiplier cannot
;} N easily catch up. The time complexity of the array is O(n+m). Since tne PE's
{ 3‘ in the parallel multiplier operate simultaneously, the multiply time is
? independent of m, and furtner, the multiply time is not strongly dependent on
. n, being only O(logzn).
AR
;b i S multiplier actually has %ghgr -order area-time complexity,
YN O(n mlog<n), than the systolic array, O(n +m However, the basic cell in
a' \j the systolic array is more complex than its counterpart in the multiplier.
1y L Since the array is clocked, each cell must contain a latch for each data bit
going in. In addition, many of the ternary logic gates in the array use more
K gﬁ transistors than tne binary gates in the multiplier, which adds even more
' S area. The result of these factors is that the area-time product remains lower

K] for the multiplier than for the array as long as the word length is less than
) 97 bits.
k §
Figure 17 compares the area-time products for the systolic array and the
;; , parallel multiplier for n<128 and m<n. The objective of a lower area-time
. e product for the systolic array is achleved, but only over a limited range.
oo The curves show that wnen m=0.5n, and n>97, the area-time product of the
’; systolic array is lower than that of the parallel multiplier. One can also

see how the stronger dependence on n is causing a sharper upward slope in the
multiplier curves, relative to those of the array. In fact, for n>128, the
area-time product of the array is lower than that of the multiplier for values
of m as high as 0.75n. The other two curves will also catch up if n is made

e
up 8

-
s W’

o larger.
Y
: Unfortunately, word lengths of 100 bits or more are very rare. This
fact limits the applicability of the array architecture described to extremely
& high precision operations. To make the systolic array competitive for shorter
ﬂ words, its hardware must be simplified. A two-fold reduction in the number of
3 v transistors in each cell would halve the area-time product at every point,
K 5% placing the systolic array significantly lower than the multiplier on the
.4 ® area-time graph. Tnis reduction would allow the systolic array to outperform
‘ the parallel multiplier on word lengths as low as 26 bits. For maximum
lE benefit, the vector length should be kept to around half the word length.
-
d -
o 6.1.4.4 Recommendations For Future Research
S .
. :g Optimization of the PE circuit is essential for implementation as a

vector amultiplier. As was snown in Section 6.1.4.3, a two-fold reduction in
PE nardware would make the systolic array useful for much smaller word lengths
S (such as 32 bits). For that reason, future research should concentrate on
SN characterizing various cell configurations such as signed binary logic, ECL,
jx I°L and CCD gates. The design in another technology might yield significant

2 L savings in hardware.

X ’,

“ The results suggest that this architecture might be Ybetter suited to

* . word-level multiplication of matrices, using constant precision operands and

Y :j results. Such a setup would eliminate the extensive hardware otherwise needed
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to handle carries out of the multiplication core. Data transmissiosn between
the cells could be pipelined or paralliel. If it is deemed necessary to obtaxn
a higher-precision product, either more time could be allowed for the serial
transmission of the extra bits, or additional lines could be added between
cells for parallel communication.

To augment the streamlining of the systolic array, research shouli
continue in alternative architectures, bYboth pipeline and parallel. Tne
objective is a vector multiplier that can operate on long vectors (>32 words)
composed of short words (8 - 16 bits). The best multiplier would be atle to
handle variable-length operands without any serious slowing. Included in this
investigation should be other forms of systolic arrays, and combinations of
parallel and pipeline structures.
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6.2 Fault-Tolerant Architectures
6.2.1 Residue Number Systems (RNS)

A major competitive number system offering high reliability modularity
and thus capable of fault-tolerance is the Residue Number System (RNS). As
sumnarized by Jenkins [102], an RNS is defined by a set of moduli, M =
{m1’,,.,m } which are pairwise relatively prime integers (i.e., no pair from
the set contains a common non-unity factor). Natural numbers in the range R =
[O,M-1], with M =m.m «eeD;, are encoded by L residue digits x,x,...X,, where
x;, = (X)mod my, i = 1,...,L, wnere X in R. Residue arithmetic i1s defified by

(X1x2...xL) * (y1y2...yL) = (2122"'ZL) (44)

the z, = (x, * y )mod m,, where * is one of addition, subtraction, or
multiplication. Note that RNS arithmetic has a natural modular structure that
leads to modularity and parallelism in tne hardware.

The lack of communication among digits in residue arithmetic suggests
that if an error occurs in one digit it cannot be propagated into otner digit
positions during subsequent operations involving addition, subtraction, or
multiplication. This property provides a basis for fault-tolerance that is
inherent in the basic algebraic structure, and which can be used to obtain
fault-tolerant hardware architectures. During some of the more difficult RNS
operations such as scaling, division, or magnitude comparison, there 1is
interaction between residue digits and this error isolation property is no:
preserved. Therefore, the fault-tolerant properties of RNS arithmetic are
particularly useful for certain types of signal processing applications where
most of the computation consists of addition, subtraction, and multiplication.
Two-dimensional digital filtering used in image ennhancement and feature
extraction is an example of a computation intensive operation that is ideally
suited for RNS techniques.

The nonweighted structure of tne RNS code is another basic property tnat
makes residue arithmetic useful in the design of fault-tolerant hardware
structurer. If a particular residue digit is consistently erroneous, the
corresponding faulty module can be identified by RNS error checking techniques
and disconnected without affecting tne other modules. If the original RIS
contains enough dynamic range, the reduced processor can continue functioning
with a reduced dynamic range. This concept is called soft failure because the
processor does not catastrophically fail when a hardware failure occurs, but
ratner tne faulty module 1is disabled, and the remaining modules continue
functioning in a useful although restricted manner. If desiradble, error
correction can be used to replace the function of the faulty module provided
enough redundancy is designed into the code.

6.2.1.1 Residue Number Implementations

Applications of RNS tneory to general purpose computers, as well as tne
use of redundant residue digits to provide error detection/correction in RNS
structures, has been researched for a number of years. More recently,
advances in VLSI circuit technoleogy have renewed interest in RNS applications
to Tigital Signal Proceasing D8P . Altnough some problems still exis<t with
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‘ ’ magnitude comparison, division, scaling, and related operations, tecnnological
) improvements nave provided economical ways to work around tnese snortcomings.
' Paul [103: recently examined sucn implementations and nas shown remarkable
fault-tolerant capabilities for the realization of high-perfcrmance DS°P

systems. He showed how system reliability can be enhanced by a parallel

- processor structure partitioning word lengtn among processors (just as  we
: propose to do for S3BNR). His implementations of Redundant Residue XNumber
) Systems [RRENS) ennanced identitication of faulty processors and modular systen
degradation. As we also propose, he showed the efficacy of short word length

!! of the residues. 4 clue to his gracefully degradable design 1is tne

- incorporation of ©pipelined memory accesses optimized for speed. SBNR
real:zation nandily captures tnhe same pipelined enhancements. ZSven more so,

. since S3NR has elements in (-1,0,1) instead of several primed modules as found

- in RNS. We Dbelieve that tne use of rﬂdundancy residue codes for fault-
tslerance capability already examined by _104-107 carry over directly to 3BLE

r reall1zatlons.

‘.

te §.2.2 Graceful Degradation _1C2]

}: Mgpplng algoritnms 0Onto processor arrays has been widely inves<tigazed
todate L67,1O9-113]. Some general observations can be made form these
efforts. Zven tnough the dynamic reallocazion of data/instructions is

) complicated and relatively slow, dynamic array configuration 1is just as

o injurious 1n tne graceful degrada%tion issue. Even an array witn complete

’ reconfigurability is difficult. In our architectural studies proposed nerein,
tne large array configurations exacerbate tnese issues. Hence, greater

'i concern for graceful degradation issues are necessary.

Tnere exist alterrative solutions, device redundancy being one of tnez.

- Another is to attempt to map smaller algorithms onto the same configuration

:j Size, assuming that spare processors are freed up for fault-tolerant purposes.
‘1’4} provides a critical assessment. As Fortes notes, when we examine
c.as8sic architectures such as the MPP, ILLIAC \115 CH1P, Diogenes arrays,

. NCR 45CG72, PC Systolic machines, turbo boards, and hardware accelerators, a

- consensus draws tne conclusion that, unless a functioning vreplica of tne

criginal array 1is up, graceful degradation is impossible. Other solutions to
- graceful degradation encompass algorithm rescheduling methods [ 163 ani
. classic error detection correction gchemes T52]_ Also, [117] reports on a

C.ever connectivity preservation scheme for VL3I multiprocessor systems.

5.7 Wafer Scale Integration

Packagel integrated device reliability is improved witn less pin out
» . o . s <
.i 181, z ut/output pads are susceptible to electrostatic discharge,
“a especlai.y on MOS circuits. Also, relative I/C pad area in small-scale Il's
18 nign. Driver area is high and they are power hogs. Finally, I/C pins are
~ mecnanical failure prone.
u'_
Pin estimates for each package i3 providei ty Rern*t's Rule. Rent's Jule
applies esypeciall o small sub-modules embedded 1n larger systems. When <he
‘. Fr F £ Y
ii package ccntains a3 major subsystem or tne entire system, Rent's Fula 13
overbiased. “onsequently, WSI is particulariy atiractive for a complete

2Ce8380Tr 1n%tegraTtion,.
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integrating tnese cnlps on one warer 1is space erricient because Of
X inter-package ccnnections. Shorter lines nave less self-capacitance. This
. reiuces tne 3size and power consumption of line drivers. Since conneciions
dominate most circuit layouts, WSI can substantially speed systems, reduce
total 1nternal power requirements and improve density. Nevertheless, cauticn

T is advised because the interconnections have not disappeared altogether.

Board-level system designers address signal quality, noise, and power-
distribution problems. In the dense layout found in VISI or WSI they beconme
Just as acute at even lower frequencies, The increase 1in interconnection
density also produces interline coupling problems caused by mutual
capacitance. Interline coupling can arise between adjacent lines on a given
layer as well as between lines on overlapping layers (most dangerous on long
runs of parallel lines). The decreased separation between lines in WSI,
compared with that in other packaging arrangements, plagues designers. Hence,

af

.
r.

'

v

vy

= long parallel runs are to be avoided in layout. To fabricate a WSI system tne

- size of a full wafer demands either a repair capability, a tolerance for

=7 failure, or a combination of both. (Consider the HP RISC chip set.)
Tolerance for failure implies redundancy in some form, while repair capability

:;: implies interveution 1in the fabrication process. Yet, the wafer-yield

¥ enhancement resulting from this redundancy or intervention is still the most
attractive benefit of WSI.

e’

»E 6.4 Reliable MVL Systolic Arrays

. Some very complex algoritnms have already been implemented on systolic
ii arrays by Kung, Leiserson, and Andrews. Only recently have MVL systolic array

implementations been studied. Andrews has established the efficacy of MVL
arrays for <tne least-mean-square algorithm which 1is much simpler than the
proposed applications to be studied herein. However, Moraga [119] has
demonstrated MVL array effectiveness for Christenson transforms (a Walsh
transform is a subset) computations. He shows how a Christenson spectrum of
n-ary, n-place, p-valued functions are configured in a MVL systolic system.
(¥ote, these are complex valued functions.)

l‘ “.!

L s

His VLSI PE's behave as an MIMD machine, unlike all other array studies
which are 3IMD. Tnis userul study provides us with important clues to develop
our algorithms and some very important preliminary results as discussed next.
Moraga conveniently provides us with an algorithm to generate a complete test
set for detecting stuck-type MVL faults.

. N
L{A.‘.A.

S

In a binary solution, 32 b1t ALU's generate 32 bit additions and complex
mul*tiplications, producing 22 it truncated results. 32 bit data and
intermediate results would nave to be stored/transferred between celils (nence,
t least 32 wires are needed for cell intercornnections). In an MVL design,
raga ‘"9, 3nows tna®t we can use ' digit arguments and tne most complex

r n is a ' Jigit subtraction mod p. Txact results for the spectral

cv

'.
LI

L)

sined a3 p . n digit woris. Hence, even for a €-place, 5-
unction, we require less tnan 32 3digits. JCne-out-of-p coding
tiating of coun%ers is trhen rea.ized 1n a snorter %tinme tnan tnass
tne multiplication of two 16 x ‘£ b1t ‘complex) numbers. 7
are now eviient wisn ¥VL 1n 8ys=oclic arrays. Firs:, f
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update counter scheme i3 another realization of distributed arithmetic., We

. can incorporate tnese same promising contribuctions witnin our S3NF  PI's.
.' Reliable MVL circuits can then be analyzed using the M-difference calculus
proposed by Lu and Lee _12C_ for fault-detection of single and multiple stuck-

at faults in MVL, based on earlier work C121,122].

- -
.

- 6.5 Ternary Logic

Three-valued or ternary logic may have an edge on binary logic [12?_.

!! The information per wire ratio is higher; the complexity of interconnections
- can be reduced; chip area reductions appear likely; and efficient error-
detection and error-correction codes can be employed. Serial arithmetic

:ﬁ Ooperations are faster. As such, these advantages encouraged study. (123-129_
“~ offer several realizazions, Given a dynamic range, the ternary circuit
complexity [101] is ~omparable to that of corresponding binary circuits.

by Nevertheless, the 1issociated reduction in the word length tends to ameliorate

tne pin-limitation problems.

A new family of ternary logic «circuits based on botn depletion and
enhancement types of complementary MOS transistors (DECMOS) has been shown to
be useful in the design of ternary digital systems. Witnh tne use of voltage
power supplies below the transistors tnreshold voltage and the exclusiocn of

T3

r res:1stors, it 1is possible to implement tnis circuitry in VLSI. Also tnis

2 offers a low power consumption, high speed and comparable performance to the

) binary counterpart circuitry. New ternary logic circuits based on the use of

. Depletion/Enhancement Complementary Metal-Oxide-Semiconductor ( DECMOS)

{ Integrated Circuits has been demonstrated. The circuits use two power
supplies each below the transistors threshold voltage and do not include any
resistor, The circurt design of basic ternary operators (inverters, YAND,

oY NOR) and an example on the use of these basic ternary operators as buildin

33 blocks in the design of a ternary full adder is now available [757 In L751
the Simple Ternary Inverter (STI), the Positive Ternary Inverter (PTI) and the

! Negative Ternary Inverter (NTI) are tnree possible ternary operators.

d 6.6 Taxonomy of Fault-Tolerant Schemes 78]

' x: 6.56.1 Fault-Tolerant Nodes
N

In tnis scheme, spare PE's are placed at each array node. The spare
PE's may be arranged in a number of different ways. Figure 18 illustrates tne
33 case wnere tnree PE's and a checker are placed at each node.

b.0.2 Temporal Redundancy

o~
Je
. In many systolic arrays, the PE's are idle for a large percentage of tn
time, The basis of the temporal redundancy scheme is to replace a faulty PZT
- by an idle neighbor, on a cyclic basis [13u].
b
: ' Alternatively, this 1idle time can be created by setting up each PE wizn
- two serarate inputs and forcing the PE to devote half of 1ts cycles to esch of
ii these inputs z131]. Appropriate steering circuits must also be provided as
1llustrated in Figure *'73.
%a

-
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Temporal Redundancy

Figure 19.

Figure 8. Node Redundancy : |
] Scheme _13%

Scheme _78)

row=orisntated, L] columns

row orientated, GI columas

Row-Oriented Schemes {137

Figure 21.

Figure 2C. Row Bypass Scheme [133]

Figure 22.

Two-D Perturbation

Figure 23.
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.2 Interconnection Reconfigurazion

Witn interconnection recontiguration, fault-tolerance 13 providei by
rerouting inter-PE connections, thereby bypassing faulty cells. The
programmable invterconnect required can be provided by a wire Jjoining ant

fusing process or by using active switches.

Tne fuse and join technologies require extra processing steps for tneir
implementation. However, area overhead is reduced. Furthermore, since no
switcnes a.e 1involved, propaga*tion delays may be smaller. On the other hand,
using active switcnes to provide the reconfigurable routing does not involve
ary spec:ial ©processing steps. It also offers tne potential for reliability
ennancement wnich is absent in other technologies.

5.0.4 Switch Types
5
Three types of switcnes can be used in tnese schemes [132}:

t. Using the PE as a Connecting Element (CE) only, thereby bypassing
1¢s norma. func+tion.

2. Multiplexing PE I/0 ports so tnat PE's can communicate with a fixed
cnoice of near-neighbor PE's (LI = Local Interconnections).

3. Using external switches that can be as flexible as desired (GI =
Jeneral Interconnection).

Wi<rn these tnree switch types the area overnead, programming difficulty and
reconfiguration flexibility increase from the CE to the GI switch.

5.0.5 Row 2ypass

In tne row bypass scheme [133], a complete row of PE's is bypassed,
using 31 switches. An example of such a scheme is illustrated in Figure 20.

7ni3 scneme 1s suiltable to situations witn high PE yield, such as bit-serial
arrays.

£

n the row oriented schemes, columns are organized tnrough tne rows,
ng one and only one column element from each and every row. The unused
ents in each row are tnen bypassed using GI switches. Schemes wnere
mns are organized through LI switches are described in [134,135,136].
1 of tnese papers describes simple circuits which enable tne
i ation around faulty PE's to be carried out completely internally and
»

~-

s where the columns are organized tnrough GI switches can be founi
ne simplest of wnich 13 illustrated in Figure 21. Because GI
are used, no simple in%sernal reconfiguration scheme has been found.
crnesa must be progranmed externally.




6.6.7 2D Perturbation

In tnis scheme, the PE's are “perturbed", in both directions, but by
only a small number of PE sites. A scheme described in [138] using CE and LI
switches only is illustrated in Figure 22.

$.6.83 Interstitial Redundancy

In an interstitial scheme, as illustrated in Figure 23, spare PE's are
provided between node sites [139]. The spare PE's are switched into the array
as required, wusing LI type switches. With similar complexity to the row LI
column schemes, this scheme performs slightly Dbetter than those when the PE
yields are between 65% and 80%.

6.6.9 Hierarchical Scheme

In :140], a GI switched scheme 1is described. Here PE's are organized
into blocks of 12 of which only 4 are required. If 4 good PE's could not be
organized from the block then the whole column of blocks would be bypassed.
For PE yields between 40% and 60% this scheme performs best out of all the
schemes presented. In fact, Hedlund intended the scheme to be used for an
array where 33% of the PE's were faulty on the average.

On comparison of tne schemes, temporal redundancy appears to be
efficient only in situations where PE idle time already exists. Interstitial
redundancy has applicat:ion for certain yield classes. For tne reconfiguration
schemes, the more complex the switch type, the greater the flexibility
afforded Lut also tne greater the area overhead. In fact, tne more complex
and flexible scnemes only become useful for lower yields.
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A Systolic SBNR Adaptive Signal Processor

MICHAEL ANDREWS

4bstract — A new reslizanon for adapnve signal processing units 1s
proposed which uses s special subset of signed digit number representa-
noms (SDNR's). This ugned binary number representsiiona (SBNR) cap-
rures all of the efficiencies of SDNR arithmetic but also makes circuit
reslizsions less compiex. Furthermore, a natursl interface between analog
and digiial numbers s provided. The senial on-line processing nature of
SBNR unlizes the VISB firsi. An aren/time complexity lor VLS] imple-
meniahions in comparable sysiolic array architectures contrasts the ef-
fectiveness of (ive different primunve VLSI cells and orgamuzations.

1. INTRODUCTION

URST [1} has noted that multi-valued logic (MVL)

may show promuse in the future for VLSI. At present,
binary systems are facing interconnect probiems which
appear 10 be insurmountable. Silicon areas devoted to
intrachip connections now consume 1wice the area of active
logic elements on the chup {2]. Array implemeniations
cause a severe escalation of interconnect area. Likewise. off
chip connections are generaung new and complex thermal
and mechanical problems for the board designer. Such
factors seek denser information content (o interconnection
ratos. In this paper. a redundant anthmetic solution is
proposed and coupled with MVL reheves some of the
sithicon area 1nefficiencies with convenuonal binary anth-
metic.

We examine one implementation of ternary anthmetc
which when viewed as redundant numbers holds promuse
for division-sparse signal processing applications. Section
II briefly describes basic digit number properuies attracuve
10 signal processing which manipulate sequenual data
streams. Section 11l discloses an efficient TRIT ternary
digits realization which serves as the pnmiuve VLSI cell.
The realization uuilizes a balanced encoding coupled with
encoded redundancy to improve both logic delay and gate
count.

Section [V idenufies the inumate coupling between word
and bit level matnx x matnx muluphcation. Section V de-
scribes a systolic implementauon of the least mean square
(LMS) algonthm invokung signed binary number represen-
tations (SBNR's), whuch is easily realized with MVL. The
LMS algonthm s a difficult adaptive signal processing
benchmark because in-place coeflficient methods do not
applv Section VI idenufies appropnate ADC and DAC
SBNR realizauons. Section VII contrasts comparable real-
1Zations.

Manuscnpt received March | 1985 revised September 0. 1985 Thus
work way sponsored by the US Army Research Office under Grant
DAAGI9-AY.C J02S

The author :s with Space Tech Corporaton. Fort Collins. CO #0526

IEEE Log Number 340048¢

11. SiIGNED DiIGIT NUMBER REPRESENTATIONS
(SDNR)

In the most general sense, a redundant number system
allows both an increase in the number of positive and
negative digits as follows.

Definition 1.

Wy ™ RXRX - - xR=Q (1)
n -1
a,_ " "a@_ @, a_,, - Z ad’ (2)
where the digits
d€R={(~-r.=r+1 01 rn=-1l.r}.

(3)

The representation described by (1), (2). and (3) s called
redundant notation with base d. The basic properties of
general SDNR are identified in Table 1. Aviziems [3].
Atkins (4], Tung [5]. Ercegovac [6]. and Robertson (7} have
shown that SDNR can effecuvely operate in a general
purpose digitai computer for the reasons noted. However.
the general redundant representation does not lead to
efficient 1mplementations unless restrictions are placed
upon the number set.

rl‘r:>0

111.  EFFICIENT SDNR REALIZATION

Several implementations based on the SDNR have al-
ready been invesugated [8]-[11]. all of which sought to
sausly general data processing requirements of a mainframe
computer. In contrast. signal processing applications are
muluplication,/addition intensive. An efficient SDNR
realization is possible if we select the foilowing redundant
signed binary number representation (SBNR).

oxae

-

Xe(-10.+1 (4)
with the notation .?, for = X (1 for = 1). The redundant
representation for 1 1s 01 or 17 whale for - 11115 01 or 11

If we assume a two digit SBNR. nine states are possible
covening the range -3 to +3 with all representations
unique except for 1 and -1 which are (01 or 1y and 0l or
11}, respectively Of the 27-state inputs for a fuil adder
truth 1able (1.e.. three states each for the wo digits to be
added x, and » and the carrv out from the previous
column (¢, ). only six distinct cases descnbed in Table 11
are necessarv if we always represent 1 as 01 and ! as 11
Furthermore. in four entnes (1. 3. 4. and 6) the carmy out i
completely determined by x and v Hence. an adder need
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TABLE |
SDNR Prorenriies
Parumerer Property

Zcron SDNR Unique il m=n.(d 1 >m and

molaid L2

Totallv parallcl with mimmal carn
borrow propagation und operahion
ume independeni of word lengih

Addinon  subtrdction

Mosi uigmlicant digit No spevial treatment

Dgits Pomtionaily weighted with sign
Nogation Simple logical compivmentanon of
“ wgn bils
;“' Vanabic length operands Handled  camly by  nghtao-kfi
ALY methods
- Mulupiation Tends 10 produce rounded reswlts
r\'- Orverflow detection Immediately follows production of
LN moat igmificant digit
End-around carry None hence single digit ALU shices
R are idenucal making VLSI highly
.::' regular
-
7 only consider carry in for cases 2 and 5 1n order 10 generate
Sv carry out. For these two cases, carry out depends on
whether the previous x, |, or v, 1s negative. From these
considerations. the VLSI circuit proposed by Takags er ul
i (9] 0 Fig. 1 suffices.

A pnmuve cell suitable for large VLSI arrays and
~ especially for adapuve signal processors must have few
;: interconnecuions beyond its nearest neighbors and very
A simple controls. Fortunately. many <ignal processing

algorithms can be implemented with bit-senal anthmetc.
L PR P P . TR ST ST SN R PR PR P I R L P I B R
NN AONDIEN N RN M AN A AT

1

|
€yl . 'l
[—r“’r"J““’TT°
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Fig. 2. Pnmiuve cell (iniernal data flow)

TABLE Il
INTERMEDIATE ADITION STEP CLASSES
Next Lower Intermed
Augend  Addend Position Carry Sum
Tvpe (\,) () (5, o8 ) (¢) (s,)
| | I - I 0
| Both are positive | -
1
hJ
2 0 | At lcast one 0 .
15 negalive
1 1] 0 - 0 0
1 1 - ] 0
4 i I - 0 0
. Both are postive -
(V] | 0 1
S i 0 At lcast one i "
i N is negative _
[ 1 1 — 1 V]

Fig. 2 represents the cell conceptually with dashed Iines
indicating the “data flow™ internal o the cell where North,
South. East. and West (N, S, E, W) data paths are available.
Intercell connections shall only be to the nearest neighbors.
Furthermore, latches on the north and east are incorpo-
rated 1n the cell to aid systohc latching of operand buts
The cell 1s now utihized in a systolic array where the
dominant operation of axn matnx muluphcauon 1s
invoked.

IV, MATRIX X MATRIX MULTIPLICATION

Matnx operations may be either sums of word levei
products or sums of bit level products. Furthermore. a
strong relauonship exists between word and bit level svs-
tolic arrays [12]. Treated as bit level manipulations. fast
area efficient VLSI arrays are possible [13], [14]. In our
SBNR implementations, a systolic-like bit level approach is
assumed where each processing cell 1s a2 mulupher and
gated full adder.

To understand this word /bit dualism, we consider the
implementations at the word level and show how bit level
similanties apply. Multiplication of two n x 2 matnces.
$=(s5,) and H=(h, ) 1o form the matnx product
Y= (v.,) becomes
v, = Es,,h./. (. y=12.-".n {S)

k=)
Without any loss of generality, ¥ may be considered as
independent vectors y. The aggregate of n matnx x vector
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a

’ product evaluations, each of the type in (6) compnses the

. matnx Y.
% ;

yl - Z ‘,:hbl . (6)
k=l
oy However, each of (6) i1s also an aggregate of n nner

L ¥ 2K
[ QY

Of |

%

|

product evaluations of the type
L]
= Z s, A, (N
hel
Muluplication of two matnices now becomes a series of
unit multiplications of (7) and an accumulation of relevant
product terms. For this reason. systolic arrays use a multi-
pher s accumulator PE. Equation (7) can be partitoned
further into a senes of bit level sum of products. The
coelhicient of each power of two in the result now becomes
a convolution of the coefficients in the two operands. This
important discovery allows us to organmize the input signal
streams so that operations at the bit level ure pipelined
onto our drray, as in Fig. 3. The tantamount constraint is
thut the physical significance position in the array must be
static so that parual products are accumulated correctly.
W e Jdo not require the complicated carry /borrow strategies
found 1n two’s complement systems because our SBNR has
4 minimal carry /borrow distance.

Counwider the muitiphcation of 1two 4 x4 matrices as In
Fig. 3. This diagram portrays the interaction of the bits of
two sets of words, 5|, and A,,. which compute v,,. Each
wjudre is & gated full adder unut of cells in Fig. 2. The data
words :n Fig. 3 have been expanded into their respective
individual bits and the kth row is associated with the kth
set of words. Words s,, enter from the nght while words
n, . enter from the left in a bit senal manner. Although we
show the least significant bits (s,. A),) entering ahead of
the next significant bits (sy,. ). the MSB’s can also enter
first 1n SBNR. Upon formung partial products. the inter-
mediate results, v . are passed verucally downward.

On a larger scale, the parual products v, are generated
a> 1n Fig. 4 1n the shaded areas. Dashed lines adjacent 10
the paruiletogram edges are guardbands to allow for growth
generated by carry bits. For m-bit operands. m «+
1.2 log,.] bits are necessary These guard bands are

L3

Fig. 4 Paruul product generauon of matnx x matnx muluphcation.

equivalent to spacing input parallelograms with guard-
bands filled in with zero bits.

The shaded areas which move down verucally generate
partial products such that successive cells at a given loca-
tion 1n the shaded diamond area accumulate all terms in

LJ
GALIDNIA L (8
A=}

The full sum of products is formed by the accumulation of
diamonds emerging from the bottom. A pipelined tree of
adder cells connected to the bottom edge generates the l(uil
sum which can be clocked out least significant bit first or
most significant bit first (SBNR only). The full sum is then
computed every 2m + 1 clock cycles.

It 1s important to note that the symmetry of diamonds 1n
Fig. 4 carries over directly into regular VLSI cells with few
intercell connections, resulting 1n an extremely efficient
VLSI computauional array. [f SBNR numbers are not used.
carry /borrow logic and intercell data paths would be
complicated by the same level of complexity necessaryv (0
fabncate full carry lookahead adders (where carrv propa-
gate logic grows as a function of wordlength). In an SBNR
implementation. only nearest neighbor cell paths and same
cell replication are required.

Another advantage to SBNR is the absence of special
arcuitry and algonthms to handle signed operands. In
iwo’'s complement anthmetic. the Baugh Wooley algonthm
can be used [15]. In thus procedure, two's complement
words are treated as positive numbers if 1) a fixed correc-
uon term 1s added to the result for each word level mulu-
plicauon, and 2) all partual products normally with a
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Fig . Adaptive signal processor.

negative weighting are complemented. Two's complement
unmplementauons on a systolic array require a negative
weighting flag or a tag on the partial products which must
propagate vertically down through the array. Hence,
another latch and control line is required for each col-
umnar path. Furthermore, final addition of correction terms
requires an initialization of the accumulators in the adder
trees.

V. AN IMPLEMENTATION OF THE LMS ALGORITHM

An N-sampled LMS adapuve filter as depicted in Fig. §
captures a signal, §, into a transversal filter whose scalar
output, y, is obtained by convolving § with adapting
coefficients H. An error signal, e, derived from the filter
output and a training signal, d, drives the LMS weight
update algonthm. The transversal filter has a set of N
registers, each of length K bits which provides storage for
the N x K array of bit values, B, for the signal §. Bold-
faced characters are vectors or matrices. The independent
time vanable, ¢, is omitted, but is implicit to discussions.
Necessary filter scalars and matrices are defined in Tables
II1 and IV.

The signal vector, §, can be partitioned into the 8N x K
array as in (9).

- -

R 5o
st st
5

B=s) .
Se
[siosd ot s

suchthats/: 1< J< N, 0<i<k (9)

where a superscnpt denotes a sampling moment and a
subscript denotes a bit position in a K-bit word. The signal
vector can be expressed as

S =BX.
The output of the filter 1s given by the convolution
y=S'H (11)

where the column vector H represents the set of N filter
coefficients.

(10)

Laad ol Bal Rat ot Aoy dei jat e dei sak Sai der Ball fa: Sa= o Sat fai Sai Sa. ihe < g
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TABLE 11
ADAPTIVE FILTER SCALERS

Al odlat SRR AS- e Jia =

h(n) =nth coefficient of an ¥-point digital adapuve filter.
(k) =kth partual product used in the output accumulauon.

1(n) = K-bit input signal sample present at pownt # of an V-pouwnt digital filter.

y =digital filter output.
d = input training signal to digital adapuve filter.
e=d - y = error ;ample generated by digital adapuve filter

TABLE IV
ADAPTIVE FILTER MATRICES

ST (3(1), 22 2(n) - (N )
HTa(A(1),AQ).- - A(n). - A(N))
Fla(fil), fQ) - f(k). - fK))
XTea(274,27%,..274), e, the set of the first K negauve
integer powers of 2.
8 =the N x K array of bit values which results when a K-bit
input signal vector is stored 1a an N-point digical [ilter.

Define the column vector F as
F=B"H (12)

and substituting (10) in (11), using the property of matrix
transposition, we have

y=XTF (13)

where the filter coefficients, F, is a set of partial products.
The LMS algorithm updates

F'=F+2ueB"BX (14)

where u is a convergence rate factor. Equations (13) and
(14) form the iterative computational tasks of the filter.

Cowan et al. {16] have observed that the output filter
formulation of (13) when compared with (11) reveals the
essential elements of the distributed arithmetic architecture
of the LMS algorithm depicted in Fig. 6. The input (ana-
log-to-digital converter) signals are presented senally to a
set of N cascaded K-bit shift registers. As this serial bit
stream enters the shift registers, the shift register parallel
outputs generate K N-bit address words on the RAM
address bus. Each RAM datum is then right-shifted X bits
and accumulated. The accumulation is complete after X
memory accesses. Finally, an output sample is converted to
an output analog signal. As in our implementation, the
distnibuted arithmetic architecture uses no hardware multi-
pliers. Using (14) in a matrix by matrix muitiplication
scheme naturally captures the bit-senial word-paralle! power
of systolic arrays behaving as SIMD data-flow engines.

An additional circuit reduction is possible when we
utilize the latches in the primitive cells of Fig. 2 to store the
input signal, S. Now, external RAM is no longer required.
As a result, the VLS] implementation is more compact.
Furthermore, vector and matnx transposition operations
are casily accomplished by routing signals in the orthogo-
nal direction since the primitive cells have NS and EW
bidirectional ports saving considerable time. A circuit 10
implement the LMS algorithm is shown in Fig. 7.

This architecture utilizes two n X m cell systolic arrays
and an adder tree. The upper array computes the filter
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output y = XTF while the lower array updates the filter
coefficients. With two systolic array«, as configured in Fig.
7. filter output and weight update can be pipelined so that
the totai computational delay from signal input sample, §,
to output signal sample, y, is no greater than one-bit
conversion of the ADC. An expensive ADC flash con-
version is not necessary.

V1. ADC anp DAC MEeTHODS

It is easily seen that a balanced recundant encoded
number, A, can be represented by a “ positive” part and a
*“negative” part, A* and A, respectively, as in (15).

A=A+ A" (15)
where the operator “+™ is the normal arithmetic oper-

ation. For example, the signed digit number, 1101, is the
sum of

1101 = (22) + (=2 -29)
“4-9m= -5 (16)

Thus property makes digital-to-analog conversion trivial.
The circuit of Fig. 8 dispiays the essential components [17].

Separating A4 as above then permits us to simply add
the parts together in a conventional adder whose result is
represented 1n the number system compatible with the
interconnected DAC as in Fig. $.

a(t)

vy

“positive” . .
biaary logic |- 'y
. N “sagative’
x| # . | vinary logic {: a7
tersary japuts
Fig. 8. 3-valued circwt.

Fig. 9. Signed digit digital-to-analog converter.

The ADC realization is greatly simplified by noting that
our TRIT representations require no positive number re-
coding. Negative numbers nced only change the represen-
tation of the leading “one” to “1” |3]. Two's complement
binary numbers carry straight across to SBNR except for
the leading digit and only if the number is negative. As a
result, any ADC can be directly used which generates
binary numbers (biased, offset, one’s or two’s complement,
sign-magnitude). It is noteworthy to observe that these
ADC/DAC efficiencies do not carry over for SDNR num-
bers.

VII. COMPARATIVE PERFORMANCE

In this section, the LMS systolic SBNR architecture is
compared to four other architactures. These cases are: 1)
conventional 2's complement binary full-pcrallel
adder /multipliers, 2) distributed anthmeuc vanation of (1)
using bit-wise adders across the filter taps, 3) . :dundant
an:hmetic cells replacing the adders/multpliers of (1), and
4) bit-sequential arithme! : cells replacing the adders/mul-
tipliers of (1).

The LMS algorithm can be impiemented in any of these
architectures with either sparse or fully parallel /pipelined
hardware. When implemented with 2N mulupliers and 2N
adders, as in Case 1 above, no faster implementation is
possible. However, for most applications, 2N multipliers
are overwhelmingly expensive in VLS real estate.
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N I1NPUT SAMPLES

[T 77 Comparable architectures are depicted in Fig. 10. Case 1
L e 9 (Fig. 10(a)) utilizes the most hardware (2N multipliers and
¥ - - 2N adders) in the conventional (ully parallel sense. Case 2

K ADOER Tasg is essentially the Cowan architecture of Fig. 6. Case 3 (Fig.
N r_*—ﬁ 10(c)) is a redundant arithmetic cell proposed by Chow [10]
. ! > where an SDNR implementation is assumed. Here, each

L 18

FV cell incorporates two signed-digit adders and one signed-
g; digit multiplier where signed-digits obey the properties of
= ‘A ven (1)-(4). Case 4 (Fig. 10(b)) is a bit-sequential cell approach
e L . also replacing the adders/multipliers of Case 1. This
§ arrangement proposed by Sips [18] makes use of redundant
arithmetic but not as efficiently as SBNR implementations
JAVAVANA . because higher radices require more wire interconnect space.
| sarrr mcisra —] The Sips bit-sequential cell can be configured in a linear
/ CORFFICIENT m" two-dimensional array for +, —, X, and + operations.
N~ Fig. 10(b) depicts the individual full adder (FA) cell with a
v a St ‘, D flip-flop for latching operands, a 3-input AND gate, and
. ; — " a 2-input XOR gate. If east/west as well as north/south
™ ._ ~=-{luw.  paths are necessary, an additional flip-flop is required. The
a XOR gate obtains the complemented operand (for aegative
values). Control lines XTL and XTL’ load successively new
L operand bits into the adjacent column for systolic addition

as shown in the lower portion of the figure.

Y The SDNR cell depicted in Fig. 10(c) has been proposed
l
B J

- a
2 [
w
-
[ 1

o~
v
£
<
©
r 3

=

by Chow for radix 16 members of the set
(-10,-9,---,0,1,2,---, +9). The cell operations are
described in Appendix A. Similar to the Sips cell, it uses
Sout redundant numbers, but in a two-level adder scheme. The
second adder converts signed-digit numbers to conven-
tional binary. Irwin and Owens {19} show that a systolic
array of such cells can perform digit addition/subtraction
in four gate delays, multiplication in six gate delays and
shifting in zero gate delays. This systolic array has one
severe drawback. Owens [20] shows that the redundant
number set must be symmetnic (i.c., |r,| = |r,| in (3)) and
multiplication operand digits must be fractions. As yet, no
rapid integer, nonsymmetric multiplication algonthms exist
for SDNR.

- \ CAARY PROPAGATION muu Gate costs listed in Table V for MOS realizations for
- ! ® each primitive logic element are used to derive the relative
i . area/time complexities of typical CAD library cells needed
! - || ' for each architecture contrasted. We assume that the full
. adder (FA) circuits require 18 MOSFET's, 4 cells, 3 levels,
SR * and 11 intraconnections. Latches are fabricated from D-
wr type flip-flops each requiring 16 MOSFET's, 8 cells, 7
levels, and 9 intraconnections (21, p. 207). Dynamic shift
registers require 8 MOSFET's, 4 cells, 2 levels, and 9
intraconnections per bit (21, p. 222]. Suatic MOS RAM
cells each use 6 MOSFET's, 4 cells, 1 level, and 10
intraconnections {21, p. 249]. An N-input NAND (N < 4)
gate requires ¥ +1 MOSFET's, N +1 cells, 1 level, and

N + 2 intraconnections (21, p. 144}].
A E Any VLSI chip is composed of interconnection area,
effective chip area occupied by library cells, and an over-
B v head area. Assuming then that a silicon compiler is used,
" : Y ' © the area and time complexities for common library cells of
» Fig 10 (a) A fully parallel conveational architecture. (b) Sips bir.  KFomlof {22] are relevant here. Table VI in conjunction
sequenual architecture. (¢) Redundant anthmeuc ceil archtecture. with Table V relates the wordlength X to the L successive
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TABLE Y
\% MOS REALIZATIONS OF BOOLEAN FUNCTIONS
“
Y Function #MOSFETs Cells Levels I[nuaconnecuons
Inverter 2 1 1 2
- NAND N+l N+1 1 N+2
Buffered NAND N+S§ N+§ 3 N+S§
NOR N=+1 N+l 1 N+2
XOR IN+3 IN+3 3 IN+6
X 2-Bit Half Adder 1S 4 k| 9
n 2-Bit Full Adder 18 4 3 11
. 1-Bit RAM (Stauic) 6 4 1 10
1-Bit ROM b) 1 1 b
1-Bit Shift Register 8 4 2 9
! D-Flip Flop 16 8 7 9
4 D-Flip- Flop (Master Slave) 32 16 14 20
i S-R Laich 6 4 2 6
5
L Y
2 TABLE VI
. LiBRARY CELL RELATIVE AREA/TIME COMPLEXITIES
[8d
Component Type Area Compl. Time Compl.
C] Parallel Multiplier (8 x 8) B? B
J Accumulator (K = LB +2)
—adder (Brent-Kung) Klog K +1 logK+1
—shifter. e.g. K 1
= Adders (Brent- Kung) BlogB+1 log 8 +1
r Coefficient Memory 8L 1
Pipeline Register 8L 1
Register, Ports. e.3. B 1
LB out of 2B switch (MUX's) LB(L+28) 1
Iteration Control (Counter) LlogL 1
Queue Elements BL 1
Systolic Cells
Chow (SDNR) 2
Sips 1 1
S3NR 1 1
TABLE Vi1
COMPARISON OF ARCHITECTURAL COMPLEXITY SYSTOLIC ARRAY
Conventonal Redundant Redundant
Binary Distnbuted Bit-Sequential Anth. Anth.
(2N mulupliers) Anthmetc Cells Cells Cells
(2N adders) (Cowan) (Sips) (Chow) (SBNR)
Gate Complexsty A2mN) O(kN) O(km) OCkm) O(kN)
Latency N+l kN bit 8 +one one ADC one ADC
memory shilts ADC bit digit but
writes conversion conversion coaversion
VLSI Amenable structure irregular moderate yes yes yes
Estimated not appropnate not appropriate 40° 10m 10
Pin Count/Cell
Area Complexaty > 2N(B82+ KlogK+1 2KlogK +1+2K KlogK +1 2A8/m)? Klog K +1
+ K+ 8L) +28L+28 +8log8+1+28 +48BlogB8+1) +Blog8+1
Time Complexity > max(8 orlog K +1) log 8 +1 log8+1+2logKk +1 mB 8

*Assumes cach ceil 1s 2 4-bit slice.

m = number of digits in 2 word.

k = number of bits in each shult register (k < m).

N = number of filter coefficients.

3 = small posive constant (3 or 4) less than the ume to complete a full bit-parallel operation.
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bat fields of B where

B = |K/L|bits. (17)

For two's complement numbers in binary fixed-point rep-
resentauon, the real value, X, can be represented by an
unsigned binary integer value, X,, and the MSB bu, X, as
um

X=X,/249-1 22X, (18)

Hence, a wordlength X has L8 bits. The area penalty of
wires is proporuonal to B and to the square root of the
effective chup area. Power distnbution lines and bonding
pads constitute the overhead area. An SBNR cell is as-
sumed to have unity area and ume complexity because
each cell is basically a “one-bit” device. The Chow cell
essentially has an area complexity four times the SBNR
because its SDNR realization basically assumes 4 bits per
digit on a radix 16 representation. The time complexity is
double because another level of logic depth is required.

Using Table VI, the area/time complexities of each of
the five architectures can be compared. Table VI also lists
the gate complexity latency, VLSI-suitability, and pin
count/cell.

VIII. CONCLUSIONS

The conventional binary architecture is hardware inten-
sive yet is ultimately the fastest. The distributed arithmetic
is a compromise between speed and silicon space. How-
ever, a regular design for VLSI is not easily achieved since
no repetitive cell is utilized as in the three systolic imple-
mentauons. Of these, the SBNR systolic implementation is
highly regular, possessing very short signailing wires. Fur-
thermore, local control in this self-timed synchronous sys-
tem eliminates the need for global control lines which
degrade performance of synchronous systems as in the
convenuonal binary architecture.

A number sysiem entirely composed of signed-bits
(-1,0,1) amenable to ternary valued circuits has been
proposed for signal processing units where add/multiply
cycles dominate. Such SBNR implementations can be con-
figured as a systolic array to perform n X n matrix oper-
ations. Because the carry/borrow distance is minimal for
SBNR, intercell communication is reduced. As a result,
extensive carry-propagation, lookahead hardware is no
longer required and mathematical operations are no longer
dependent on wordlength as in conventional two’s comple-
ment binary systems. Thus synchrony so vital to systolic
arrays is more easily achieved and true data-flow SIMD
machines result.

Although the area and time complexities of the three
systolic arrays are comparable, the latency (time interval
from input signal 10 output signal) is smallest for the
SBNR array. Furthermore, the SBNR offers a successful
fauit tolerant impiementation (4], {10]. The estimated pin
count/cell is smallest for the SBNR array. This is because
the left-to-right (MSB-t0-LSB) computing property of
SBNR numbers allows us to begin computations upon
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receipt of the MSB from the ADC. In view of these
properties, we conclude that the SBNR systolic array 1s a
competitive if not superior alternative to other implemen-
tations. We anticipate future signal processing architec-
tures will take advantage of SBNR.

APPENDIX A
SDNR CHOw CELL OPERATIONS

The SDNR cell of Fig. 10(c) is capable of addition,
subtraction, muluplicauon, and assimulauon (which assists
data conversion). All operands are assumed to be normal-
ized floating-point numbers of the form

X=rfo. ¥ xr!
1=Q

where E, is an integer with an e-bit two’s complement
representation. In the following operauons, ¢’ and w’ are
transfer digits which perform the same intermediate
carry/borrow functions as our SBNR Z,, Z,,, and C,,.
C,, bits except that ¢* and w’ digits each require multiple
lines (e.g., a radix 16 SDNR digit can be represented with §
bits, one for sign and four for magnitude).

Definitions

Woa =Kr —1)/2]

las =Kr =1)/2) if p=Kr—=1)/2|is even,

=|r —=1)/2|+1, otherwise.

U ax = KO = Wit )/ 71

X max ‘KP + U + Woex = Imu)/”'

D, contains digits from Q to r — 1.

D,,_,;, + conmains digits from 0 to 7 - 1.

D,u D, _,,+ contains digits from p to r - 1.

Input Digits

The input digits a, b, and ¢ belong to the digit sets
D,uD,_,,+. D, and D, respectively.

The transfer digits +' and w’ belong to the digit sets
D,_ma, and D, respectively.

The borrow B8’ is either 0 or 1.

Functions of the Three Levels

(A-1)

(M] If M-MULT =1
then ru+we bc with u In D(,__., and w in
D(l-v...)'
else ue—b and w« 0.
(S1] 1f S1-ADD =1
then rx +t1e—=a+w +u,
elserx+i1—a—w -u.
In either case, x isin D, ,,and 1 isin D, _,
[S2] If ASSIM =1
then -8 +s«a-B' withsin D,_,, + and B
is0orl,

else s—1'+x.
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ABSTRACT W >
A compurative study of various number systems 1- Q<°§»x' e ¢
the relutive merits for real-time signal processiny Q@” ‘53 .Ty,
signed digit, redundant number, and 4 new rupr e° ignud-
binary number representation (SENH) are contrastec circuit
complexity. [t is shown that the SBNR system h dpeed, gute
complexity and regularity attributes amenable to V. .vorpluns aru
proposed for minimal intercell connectivitivs, u prere itte for uystolic

array 1mplementations. A test cuse realizing the least-squares ulgorithm
in A aystolic urruy for aduptive beumforming applications indicates
compurutive ditfterences. Executing a square-root free Givens rotation
matrix operation 1terutively 1n a two systolic array configuration
demonstrates real time signal proceusing for beamforming.

INTRODUCTION

A comparative architecture study waus performed in order to implement
the sculed Givens rotation solution to the least-squares minimization
problem. Three architectures are examined: a) Conventional Systolic
Array, b) Distributed Arithmetic Arramy, and c) SBNR Systolic Array.
Inportunt cunsiderations in adaptive beamaforming algurithm to architecture
myupping include gute count estimutes for some of the architecturwy and
tables tor performing these estimutes. A systolic architecture tor aun
aduptive beumformer trucking system is developed for performing recursive
least-squares minimization.

The purpose of this project is to identify engineering trade-offs and
interconnection strutegies cupable of achieving real-time implementation
of signul processing algorithms via limited user-programmable mechanisms
(u.g., rirmware). Flexible tiermwarc-=orivnted architectures dedicated to
S1gnual processing can then be 1dentified. The specitic test algorithn
pertorms an orthogonal triangularization of the duta matrix using a
pipelined sequence of Givens rotations and generates the required residual
without huviug to solve the ussociated triungular lineuar sysiem by back-
substitution.

Array Architectures

Systolic uarruy architectures reumain diverse. At the extreme ends are
the WARP arruy und the GAPP array. WARP utilizes 68000 microprocessors in
euch processing vliement (PE). CAPP uses a 1 bit ALU with 128 bit RAM us
each PE. Although more primitive (68000 is a 1nh it parullel engine),
GAPP is a single chip of 72 PE's. Because of its high speed and
8availability, GAPP is viable. Between these outlying architectures lie
conventional and distributed arithmetic processing cell compositions.

This work wus sponsored in part by Army Research .Office Contract #DAAG2y-
83-C-002%. The views, opinicns, and findings contained in this report ate
those of the author and should not be construed as an official Depurtment
of the Army position, policy or decision, unlcss so designuted by other
documentation.
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::J,, A study of basic PE's was made. A new PE utilizing a primitive cell
b is proposed for a systolic arruy PE. Anotner alternative PE based on a
distributed arithmetic cell was studied. This cell incrvases computation
i speed by reducing multiplication to table-lookup of partial products and a
series of snift/add operations.
o Beamforming Architectures
o~ An antenna beum 13 a collection of point sources or receptors where
~ guometry governs the characteristic equations of the system. For u
uniformly spaced line array as depicted in Figure 1, the following form
R applies:
&
N~1 _
v, Gla) = L gne'Jz 7 (ndcos(a)/2) (1)
. n=0

- Equation ' nus the basic form of a DFT. when we consider that cos a =
Vo (k/N) (A/d), the beamformer output at angles a, is computablc by the gr"l‘
aa follows.

E'E N-1 ,
v Gk - I snu-az " nk/N (2)
n=Q

'::'. From this we can easily see that a 2-D temporal-spatial Fourier trunsform
: can torm beams in the nonuniformly spuced look directions. Adaptive
- beamforming must then cause the beam pattern to favor certain spatial or
.' spectral purumeters.
.Jﬂ
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(o Figure 1 Line Array Beamtorming

Feintuch, et. al.', investiguted an adaptive tracking system which
employed the LM5 algorithm to minimize thu error between two beums of a
split arruy. The weights generatod are analyzed to determine the max

ﬁ Adaptive Beumformer and Tracker Jystem
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weight. It roughly corresponds to the delay between the phase centers of
the two beams. The pnase or time-delay 1S then used tOo provide a bearing
estimate (for adaptive nulling, etc.).

et N
L 2>

e 3

We consider a least-square implementation of the adaptive tracker to
construct a completuly systoiic adaptive beamformer/tracker from tne
systolic Givens rotation, DFT, and backsubstitution architectures.
Feintuch provides & suitable starting point for incorporating
aduptability. OSimply stated, we use the peuks between weights to
electronicully steer the beam to force nulls at jummer angles. A time-
domain leust-squuares adaptive trucking eystem can be configured as shown
R in Figure 2. Two inputs are requlred for the adaptive trucker. Mult.ple
time "snapshots” of these sumples are collected to form thne y(r) and X(n)
and computes the weight vector i(u) which minimizes the leust-squarcs

ey
b

PR RIS

."‘.

o
- norm:
| E(n) = {le(n)ii = 1 X{(n)¥(n)+y(n)}] (3)
o
v’ The largest tap of the weight vector is then found and provides the phase
) bearing estimate.
v,
T
. pu—
S = -
&, - =
P :1". pume Lot ad )4
K <+, - -
P =) p— Least-
f . Squares
' Function
: 3 Block
)
: ] . B
v:.- : =
._. — : E
K b Gair ras  [———— P
;=
) - wacsy [0

Figure 2 Least-Squares Time Domain Adaptive Tracker

In the frequency domain solution, shown in Figure 2, domain inputs
. undergo a Fourier transform. Multiple time "snapshots” of one half the
: , arrany are tuken to produce a matrix of frequency componeuts for the LS
algorithm. The largest tap over the frequency weights is selected and the

o phase provides a bearing estimate which i3 used to steer the beum.
*, ) -
S
: Systolic Adaptive Beamformer and Tracking System
.{ - Figure 5 shows a complete frequency-domain adaptive beamformer and
. ii tracking system. The computational intensive components of the system are
systolic array modules.
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Figure 3 Frequency Domain Adaptive Beumformer and Trucker

The K-point DFT modules of the system perform u Fourier transform of
the time domuain input data. A system consideration ut this point is the
Fourier traansform throughput. The phase shift multiply is driven by the
phuse estimate from the adaptive trucker. Each frequency component from
the Pourier transform is multiplied by the term

e~ivpTy

where T i3 a function of the steering angle. A multiplier array operates
at this function block. A conventional distributed arithmetic engine or
SBNR distributed arithmetic engine muy be itdeal for this Array since Hm 18
only position dependent and the stecr asngle is the only variable and non-
position dependent quuntity in the computution of T qu 4 fixed sensor
arruy. Hence, un ultru fast table look-up of e ™ ¥uTy

solely on the steering angle.

cdan occur bused




PR
-
,%-I

fg

o

[y

.
v

.

P

L e e s o0 A ad ey b b mod 4o g L an ol e a4 4 fg uia 4og h ik anl il mad aad doc A 4ol Ak dna dnd And ek e dod Ben it aai dei deli dei A |

An adder array is used to form the frequency bins of the beam. Since
the bewam i3 ulresay 1n the frequency domain after the summing operation,
the bins can be fed directly to the L3 algorithm. The LS block consists
of a Givens rotation systolic arruy and a backsubstitution array to
compute the welghts. .The peak of tne weight vector can be found using a
quadratic 1nterpoiator. The interpolator performs a quadratic fit to tne
largest weight element and the two adjacent weights in tne frequency
domain.

Systolic Arruy lLeast Squares Solution

McWhirteré proposcvs u set of 35 primitive cells arrunged in &
triangular systolic urray wnich performs recursive least-squares
minimization. OQOrthogonal triungularization of the data matrix is
performed using a pipelined sequence of square-root free Civens rotations.
The squuare-root fruu (ivens rotation triangular systollc arruy 13 shown in
Pigure 4. The ussocirated primitive cells are given in Figure L., To
provide ua common performunce testbed, the conventional binary, SBNR-, and
distributed arithmetic arcnitucturvs were studied based on un
implementation of this systolic array.

Barlow and Ispen4 developed a scaled Givens rotation systolic
algoritha. The scaled Givens rotation algorithm operates on bunded
matrices of width w = p + q + | where p is the number of superdiagonals
and q 1s the number of subdiagonals. Assuming ® rows in the banded
matrix and s right hand side vectors, the number of computation steps are
given by:

2m + 3(q+1) + z + 1 (4)

The individual cell complexity (the number of equations solved at each
cell) 13 approximautely the Same aus those for the square-root free Civens
rotation. Only one division operation id required in the dcaled Givens
rotation and many of the multiplies ure reduced to shift operations. Both
scaled Givens rotations and squure-root {ree Givens rotations have
processor utilizations of approximately 50%.

Conventional Binary Implementution

The GAPPIT™ 13 & commercially available gystolic array device
providing 72 conventional binary processing vlements, dimensioned a3 4 6 X
12 rectilinesr array. The square-root free or scaled Givens rotution 13
vasi1ly implemented on this device. 1In order to obtain realistic speed
estimutes for a conventional binary implementstion of the square-root free
Givens rotution, code for the GAPP device has been written 1n a C-like
language known as caL™™,

The GAL square-root free Givens rotation code requires approximately

(2r + ¢ + 1)(83n2 + 224n + 156) (5)
instruction cycles where m is the bit length of-tue input operands, r i3
the number of matrix rows, and ¢ i3 the number of matrix columas. The

latency from first input to first residual output is

(c + r *» 1)(83n° +224n + 156) (6)
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The time to complete the entuire matrix reductlon increagses linearly
with the size of the array. The number of elements processed, however,
lncreagses a3 the square of the arruay size. 7O estimate tne precesaing
power of the GAPP solution, compute the nuaber of array elements processed
pe.s 1n3truction cycle. © Assuming a fixed word lengtin, tne word lengtin
dependent term 13 a constant K = 3%n° ¢« 2.4n + 150. The number of array
elements processed per cycle 13:

re/(2r + ¢ + 1)k elements/cycle (7,
It cun be seun thut for squure matrices (r = ¢) the number of elements
procesuvd per cycle increascs quadriatically us the array s.ize incresseus.
Improvenments in speed muy b obtulned 1f concurrency can be dchieved in
the operation of the three cell types of Mcwhirter's algorithm. A
promising solution 13 to use thrve Scpurate arruys (one for vach cell
type), and caretully synchronize data flow butween the urruys.

SBNR Implementation

A mesh connected systolic array of SBHR cells 1s used to implement
Mcwhirter's algorithm. A single SBNR cell is shown in PFigure 6. [t
consists of an appropriate set of registers which act as input to an
intermediate SBNR ALU and a final SBNR ALU.

It i3 possible to derive the minimum execution speed and latency for
this particular SBNR implementation of McwWhirter's systolic uarray by
considering the datu dependencies in the equations. The muximum data
dependency patnh length for the boundary, internal, and finul cells are S,
2, and YU, respectively. Using the 2N+1 foruwula for latency, we can
compute latencies and speed estimates for each cell.

The maximum boundary cell latency is 11 cycles. At the internal
cell, the maximum latency 18 5 cycles. At the final cell, the maximum
latency 13 3 cycles. If r 1s the number of rows and ¢ 18 the number of
columns, then the maximum latency to the first residual 1is:

Lic,r) = 11(c + r + 1) (a)
The execution time for the entire Givens rotation 1is:
S(ec,r,n) = (2r + ¢ + 1)(11 +# n =~ 1) (9)

where n is the bit length of the operands. Notice that the execution time
is linearly dependent (O(n)) on the bit length of the operands where the
CAPP arrauy execution time 1s quadratically dupendent (0(n)). This is a
result of the reduction of multiplication complexity in SBNR arithmetic.

Distributed Arithmetic Implementation

The pgoal in distributed aritnmetic architectures is to reduce
computation time by performing table look-up to produce partial
computation results. For exumple, multiplication can be reduced to a
table look-up of partial products followed by a series of shit't and adds
to obtain the final result. In an N bit by N bit multiply, it is possible
to divide euch operund into k segments. By cumbining wach segment of one
operand with every other segment of the other operand, an address in RAN

A A A Bl Aad aod Aol Al ool 2o 4 A 4 4 o8 a4 2 o2

LT A
R
W

L acd ook o |




T - T o T P T e o P W W oW OV E T W YV T YN T WYY '---.v.-v-..-.--..r

”, \
_.: of each partisl product 13 formed. The partial products are locked up
LN and, througn & 8¢ries ot snifts and adda, accumuiated to form the {ihal
product. Tuble ' suows u compurison of u typical N b1t multiply us:ng
'l conventional binary versus distributed arithmet.c.
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Table 1 N Bit By N Bit Multiply Comparison

Conventional Distributed
Binary Arithmetic

Operations Operations

n shifts k%=1 shifts

n_adds k2-1 adds

n° ands (bit-wise) k° table look~ups

If RAM access speed is greuter than the computation time for n? AND
operations, then distributed arithmetic provides better performunce than
conventional arithmetic for k < n. There id a trude-of! between table
s1ze and computatlon/speed. The table size for any distributed arithmetac
multiplier 13 290/ K yords. While computdtion time is directly
proportional to k, the tuble is indirectly proportional to k (i.e., large
k implies lurger computation time but smaller table s1ze).

An n bit distributed arithmetic computational element is shown in
Figure 7. This computational element 1S a single bit ALU with the special
feature that a table address register can be louded and a partial product
retrieved for further computation.

x(t)
k
\
x .
L
* . r —~e{ RAM -.SB{FT - % »>
. . I ADD c
J B
- '
A BUFFER
K-BIT SHIFT T . |
REGISTERS c SUM SRIFT
H

Figure 7 Distributed Arithmetic Primitive blement Ar.n. te-2.-

This cell can be incorporated in & mesh-connecte: sya-
perform the Civens rotation by McwWhirter's algo~itnm. ~
ussumed to operate like the bit-sequen;;alqcell of wtne
thut the wmultiplication is no longer C . n~, bul LA
latency and execution time can Ye made by CoemoSv i
estimates made for GAPP. Thus the latency
arithmeti. implementation of McWhirter's algori: =

(c + r +1)(224n + 156)
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and the execution time is approximately
(2r + ¢ + 1)(224n + 156) (11)

COMPARATIVE ANALYSIS

A comparison of systolic primitive elements is presented in Table 2.
Five architectures are examined.

a. Conventional binary bit sequential cell (GAPP)

b. Conventional binary (complex cell)

c. Distributed arithmetic

d. Signed binary number representstion (complex cell)

e. Signed binary number representation (mesh-connected PE's)
The architectures were contrasted assuming a8 square-root free Givens
rotation implementation to obtain speed and latency estimates. The
conventionsl binary (complex cell) und SENR (complex cell) are both
algorithm dedicated architectures. As u result, they huve irregular
structures iand are not VLSI amenauble. The conventionul binary (complex
cell) architecture hus O(1) speed and latency. The SBNR (complex cell)
and the 3BNR (meshe.connected PE), which, by the way, is VLS amenable,
have O(n) and 0(1) speed and latency, respectively. The distributed
arithmetic architecture exhibita O(n) speed and latency.

The conventional binary (complex cell) is superior in terms of speed
and latency only. The distributed arithmetic and SBNR (mesh-connected PE)
architectures have excellent speed and latency and both are VLSI amenable.
Distributed arithmetic bandwidth is smaller than SBNR (mesh-connected PE)
bandwidth, however, SBNR (mesh-connected PE) has a superior latency. For
adaptive beanformer implementation, both architectures are viable.

Table 2 Comparison of Systolic Array°Architectures

Complexity and Performance Cell Type

Conventional Conventional Distributed
Binary Binary Arithmetic
Bit Seq. Cell (1 Adders)’
(GAPP) (4 Multipliers)
Speed  (2r+c+1)(83n2+224n+156)  3(2r+c+1) (2r+c+1)(2240+156)
Latency (r+ce+1)(835n2+224n+1) 3(r+cet) (rec+1)(224n+1)
Cell Siaple Complex Simple
Complexity
1/0 Bandwidth ¢ en c
VISI Amenable Yes structure Yes
irregular
Algorithm No Yes . No
Dedicated
Gate Counts - - -
1Q
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1. For Boundary Cell. Internal cell requires 2 Adders, 2 Multipliers.
Final cell requires 1 Multiplier.

SBNR SBNR
(Complex cell) (mesh-connected PE's)
Speed (2r+c+1)(20+n) 0(n)
Latency 20(rec+1) o(1)
Cell Complex Simple
Complexity (multiple SBNR PE's)
I/0 Bandwidth 2c 2¢
VLSI Amenable structure Yes
irregular
Algorithm Yes No
Dedicated
Gate Count rc(2768 + Tlog.w rc(187 + log,w
+ 42w + 64n3 + 6w)

Table 2 Notation:

r - rows of rectilinear matrix
¢ - columns of rect